Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Practical Guidelines for the Selection and Evaluation of Natural Language Processing Techniques in Requirements Engineering (2401.01508v3)

Published 3 Jan 2024 in cs.SE

Abstract: NLP is now a cornerstone of requirements automation. One compelling factor behind the growing adoption of NLP in Requirements Engineering (RE) is the prevalent use of natural language (NL) for specifying requirements in industry. NLP techniques are commonly used for automatically classifying requirements, extracting important information, e.g., domain models and glossary terms, and performing quality assurance tasks, such as ambiguity handling and completeness checking. With so many different NLP solution strategies available and the possibility of applying machine learning alongside, it can be challenging to choose the right strategy for a specific RE task and to evaluate the resulting solution in an empirically rigorous manner. In this chapter, we present guidelines for the selection of NLP techniques as well as for their evaluation in the context of RE. In particular, we discuss how to choose among different strategies such as traditional NLP, feature-based machine learning, and language-model-based methods. Our ultimate hope for this chapter is to serve as a stepping stone, assisting newcomers to NLP4RE in quickly initiating themselves into the NLP technologies most pertinent to the RE field.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: