Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hadamard integrators for wave equations in time and frequency domain: Eulerian formulations via butterfly algorithms (2401.01423v2)

Published 2 Jan 2024 in math.NA, cs.NA, math-ph, and math.MP

Abstract: Starting from the Kirchhoff-Huygens representation and Duhamel's principle of time-domain wave equations, we propose novel butterfly-compressed Hadamard integrators for self-adjoint wave equations in both time and frequency domain in an inhomogeneous medium. First, we incorporate the leading term of Hadamard's ansatz into the Kirchhoff-Huygens representation to develop a short-time valid propagator. Second, using the Fourier transform in time, we derive the corresponding Eulerian short-time propagator in frequency domain; on top of this propagator, we further develop a time-frequency-time (TFT) method for the Cauchy problem of time-domain wave equations. Third, we further propose the time-frequency-time-frequency (TFTF) method for the corresponding point-source Helmholtz equation, which provides Green's functions of the Helmholtz equation for all angular frequencies within a given frequency band. Fourth, to implement TFT and TFTF methods efficiently, we introduce butterfly algorithms to compress oscillatory integral kernels at different frequencies. As a result, the proposed methods can construct wave field beyond caustics implicitly and advance spatially overturning waves in time naturally with quasi-optimal computational complexity and memory usage. Furthermore, once constructed the Hadamard integrators can be employed to solve both time-domain wave equations with various initial conditions and frequency-domain wave equations with different point sources. Numerical examples for two-dimensional wave equations illustrate the accuracy and efficiency of the proposed methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. Dover Publications, Inc., New York. (1965)
  2. Babich, V.M.: The short wave asymptotic form of the solution for the problem of a point source in an inhomogeneous medium. USSR Computational Mathematics and Mathematical Physics 5(5), 247–251 (1965)
  3. SIAM Review 42, 451–484 (2000)
  4. J. Comput. Phys. 261, 36–64 (2014)
  5. J. Comput. Phys. 59, 396–404 (1985)
  6. SIAM Multiscale Model. Simul. 7, 1727–1750 (2009)
  7. John Wiley-Sons (1962)
  8. J. Comput. Phys. 228, 6440–6455 (2009)
  9. Academic Press, New York and London (1964)
  10. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University Press; (reprinted Dover Publications, New York 1952) (1923)
  11. J. Sci. Comput. 88, 54 (2021)
  12. SIAM J. Sci. Comput. 21, 2126–2143 (2000)
  13. J. Comput. Phys. 196, 367–391 (2004)
  14. J. Comput. Phys. 348, 108–138 (2017)
  15. J. Comput. Phys. 228, 2951–2977 (2009)
  16. J. Comput. Phys. 229, 8888–8917 (2010)
  17. Geophysics 72, SM61–SM76 (2007)
  18. Methods Appl. Analy. 21, 031–066 (2014)
  19. Comm. in Comp. Phys. 8, 758–796 (2010)
  20. SIAM Journal on Scientific Computing 39(2), A503–A531 (2017)
  21. Multiscale Modeling & Simulation 13(2), 714–732 (2015)
  22. J. Comput. Phys. 115, 200–212 (1994)
  23. IEEE Antennas and Wireless Propagation Letters 16, 1179–1183 (2016)
  24. SIAM Multiscale Model. Simul. 21, 269–308 (2023)
  25. SIAM J. Sci. Comput. 43, A883–A907 (2021)
  26. SIAM J. Multiscale Model. Simul. 14(3), 1089–1122 (2016)
  27. J. Comput. Phys. 313, 478–510 (2016)
  28. SIAM J. Multiscale Model. Simul. 16, 727–751 (2018)
  29. J. Comput. Phys. 270, 378–401 (2014)
  30. SIAM J. Numer. Analy. 52, 23–44 (2014)
  31. IEEE Transactions on Antennas and Propagation 44(8), 1086–1093 (1996)
  32. SIAM J. Numer. Analy. 28, 907–922 (1991)
  33. SIAM J. Multiscale Modeling and Simulation 16, 595–636 (2016)
  34. SIAM J. Numer. Analy. 59, 2536–2570 (2021)
  35. SIAM Multiscale Model. Simul. 19, 46–86 (2021)
  36. Minimax Theory and its Applications 8, 171–212 (2023)
  37. Geophysics 67, 167–176 (2002)
  38. J. Comput. Phys. 229, 7848–7873 (2010)
  39. SIAM J. Multiscale Modeling and Simulation 8, 1803–1837 (2010)
  40. Journal of Scientific Computing 67, 883–908 (2016)
  41. J. Sci. Comp. 19, 501–526 (2003)
  42. J. Comput. Phys. 228, 8856–8871 (2009)
  43. SIAM J. Multiscale Modeling and Simulation 6, 688–709 (2007)
  44. Journal of Computational Physics 497, 112637 (2024)
  45. Geophys. J. Internat. 162, 1–8 (2005)
  46. Zhao, H.K.: Fast sweeping method for eikonal equations. Math. Comp. 74, 603–627 (2005)

Summary

We haven't generated a summary for this paper yet.