Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tissue Artifact Segmentation and Severity Analysis for Automated Diagnosis Using Whole Slide Images (2401.01386v3)

Published 1 Jan 2024 in eess.IV, cs.CV, and cs.LG

Abstract: Traditionally, pathological analysis and diagnosis are performed by manually eyeballing glass slide specimens under a microscope by an expert. The whole slide image is the digital specimen produced from the glass slide. Whole slide image enabled specimens to be observed on a computer screen and led to computational pathology where computer vision and artificial intelligence are utilized for automated analysis and diagnosis. With the current computational advancement, the entire whole slide image can be analyzed autonomously without human supervision. However, the analysis could fail or lead to wrong diagnosis if the whole slide image is affected by tissue artifacts such as tissue fold or air bubbles depending on the severity. Existing artifact detection methods rely on experts for severity assessment to eliminate artifact affected regions from the analysis. This process is time consuming, exhausting and undermines the goal of automated analysis or removal of artifacts without evaluating their severity, which could result in the loss of diagnostically important data. Therefore, it is necessary to detect artifacts and then assess their severity automatically. In this paper, we propose a system that incorporates severity evaluation with artifact detection utilizing convolutional neural networks. The proposed system uses DoubleUNet to segment artifacts and an ensemble network of six fine tuned convolutional neural network models to determine severity. This method outperformed current state of the art in accuracy by 9 percent for artifact segmentation and achieved a strong correlation of 97 percent with the evaluation of pathologists for severity assessment. The robustness of the system was demonstrated using our proposed heterogeneous dataset and practical usability was ensured by integrating it with an automated analysis system.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.