Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Integrating Edges into U-Net Models with Explainable Activation Maps for Brain Tumor Segmentation using MR Images (2401.01303v1)

Published 2 Jan 2024 in eess.IV, cs.CV, and cs.LG

Abstract: Manual delineation of tumor regions from magnetic resonance (MR) images is time-consuming, requires an expert, and is prone to human error. In recent years, deep learning models have been the go-to approach for the segmentation of brain tumors. U-Net and its' variants for semantic segmentation of medical images have achieved good results in the literature. However, U-Net and its' variants tend to over-segment tumor regions and may not accurately segment the tumor edges. The edges of the tumor are as important as the tumor regions for accurate diagnosis, surgical precision, and treatment planning. In the proposed work, the authors aim to extract edges from the ground truth using a derivative-like filter followed by edge reconstruction to obtain an edge ground truth in addition to the brain tumor ground truth. Utilizing both ground truths, the author studies several U-Net and its' variant architectures with and without tumor edges ground truth as a target along with the tumor ground truth for brain tumor segmentation. The author used the BraTS2020 benchmark dataset to perform the study and the results are tabulated for the dice and Hausdorff95 metrics. The mean and median metrics are calculated for the whole tumor (WT), tumor core (TC), and enhancing tumor (ET) regions. Compared to the baseline U-Net and its variants, the models that learned edges along with the tumor regions performed well in core tumor regions in both training and validation datasets. The improved performance of edge-trained models trained on baseline models like U-Net and V-Net achieved performance similar to baseline state-of-the-art models like Swin U-Net and hybrid MR-U-Net. The edge-target trained models are capable of generating edge maps that can be useful for treatment planning. Additionally, for further explainability of the results, the activation map generated by the hybrid MR-U-Net has been studied.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.