Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning for SAR View Angle Inversion with Differentiable SAR Renderer (2401.01165v1)

Published 2 Jan 2024 in cs.LG and eess.SP

Abstract: The electromagnetic inverse problem has long been a research hotspot. This study aims to reverse radar view angles in synthetic aperture radar (SAR) images given a target model. Nonetheless, the scarcity of SAR data, combined with the intricate background interference and imaging mechanisms, limit the applications of existing learning-based approaches. To address these challenges, we propose an interactive deep reinforcement learning (DRL) framework, where an electromagnetic simulator named differentiable SAR render (DSR) is embedded to facilitate the interaction between the agent and the environment, simulating a human-like process of angle prediction. Specifically, DSR generates SAR images at arbitrary view angles in real-time. And the differences in sequential and semantic aspects between the view angle-corresponding images are leveraged to construct the state space in DRL, which effectively suppress the complex background interference, enhance the sensitivity to temporal variations, and improve the capability to capture fine-grained information. Additionally, in order to maintain the stability and convergence of our method, a series of reward mechanisms, such as memory difference, smoothing and boundary penalty, are utilized to form the final reward function. Extensive experiments performed on both simulated and real datasets demonstrate the effectiveness and robustness of our proposed method. When utilized in the cross-domain area, the proposed method greatly mitigates inconsistency between simulated and real domains, outperforming reference methods significantly.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geoscience and remote sensing magazine, vol. 1, no. 1, pp. 6–43, 2013.
  2. Y. Zhou, H. Liu, F. Ma, Z. Pan, and F. Zhang, “A sidelobe-aware small ship detection network for synthetic aperture radar imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–16, 2023.
  3. M. Ulrich, S. Braun, D. Köhler, D. Niederlöhner, F. Faion, C. Gläser, and H. Blume, “Improved orientation estimation and detection with hybrid object detection networks for automotive radar,” in 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2022, pp. 111–117.
  4. L. He, R. Panciera, M. A. Tanase, J. P. Walker, and Q. Qin, “Soil moisture retrieval in agricultural fields using adaptive model-based polarimetric decomposition of sar data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 8, pp. 4445–4460, 2016.
  5. X. Zhang and F. Xu, “Coherent spatially varying bidirectional scattering distribution function of rough surface,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–17, 2021.
  6. S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747, 2016.
  7. R. S. Sutton, “Two problems with backpropagation and other steepest-descent learning procedures for networks,” in Proc. of Eightth Annual Conference of the Cognitive Science Society, 1986, pp. 823–831.
  8. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  9. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-international conference on neural networks, vol. 4.   IEEE, 1995, pp. 1942–1948.
  10. Z. Beheshti and S. M. H. Shamsuddin, “A review of population-based meta-heuristic algorithms,” Int. j. adv. soft comput. appl, vol. 5, no. 1, pp. 1–35, 2013.
  11. O. Karakuş, I. Rizaev, and A. Achim, “Ship wake detection in sar images via sparse regularization,” arXiv preprint arXiv:1904.03309, 2019.
  12. J. Kallestad, R. Hasibi, A. Hemmati, and K. Sörensen, “A general deep reinforcement learning hyperheuristic framework for solving combinatorial optimization problems,” European Journal of Operational Research, vol. 309, no. 1, pp. 446–468, 2023.
  13. Z. Zhou, S. Wei, H. Zhang, R. Shen, M. Wang, J. Shi, and X. Zhang, “Saf-3dnet: Unsupervised amp-inspired network for 3-d mmw sar imaging and autofocusing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
  14. L. Li, Z. Zhou, S. Wu, and Y. Cao, “Multi-scale edge-guided learning for 3d reconstruction,” ACM Transactions on Multimedia Computing, Communications and Applications, vol. 19, no. 3, pp. 1–24, 2023.
  15. Z. Zhou, L. Li, S. Wu, X. Li, K. Ma, and X. Zhang, “Replay attention and data augmentation network for 3-d face and object reconstruction,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 5, no. 3, pp. 308–320, 2023.
  16. Q. Guo, H. Xu, and F. Xu, “Causal adversarial autoencoder for disentangled sar image representation and few-shot target recognition,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
  17. Q. Song, F. Xu, X. X. Zhu, and Y.-Q. Jin, “Learning to generate sar images with adversarial autoencoder,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2021.
  18. Q. Guo and F. Xu, “Learning low-dimensional sar target representations from few samples,” in 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China).   IEEE, 2022, pp. 1–2.
  19. X. Feng, W. Haipeng, and J. Yaqiu, “Deep learning as applied in sar target recognition and terrain classification,” Journal of Radars, vol. 6, no. 2, pp. 136–148, 2017.
  20. X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and F. Fraundorfer, “Deep learning in remote sensing: A comprehensive review and list of resources,” IEEE geoscience and remote sensing magazine, vol. 5, no. 4, pp. 8–36, 2017.
  21. Q. Guo, Y. Qian, H. Wang, W. Yu, F. Xu, T. J. Cui, and Y.-Q. Jin, “Recognition rate versus substitution rate curve: An objective utility assessment criterion of simulated training data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
  22. B. Sridharan, S. Mehta, Y. Pathak, and U. D. Priyakumar, “Deep reinforcement learning for molecular inverse problem of nuclear magnetic resonance spectra to molecular structure,” The Journal of Physical Chemistry Letters, vol. 13, no. 22, pp. 4924–4933, 2022.
  23. N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement learning for combinatorial optimization: A survey,” Computers & Operations Research, vol. 134, p. 105400, 2021.
  24. D. J. Mankowitz, A. Michi, A. Zhernov, M. Gelmi, M. Selvi, C. Paduraru, E. Leurent, S. Iqbal, J.-B. Lespiau, A. Ahern et al., “Faster sorting algorithms discovered using deep reinforcement learning,” Nature, vol. 618, no. 7964, pp. 257–263, 2023.
  25. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.
  26. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.
  27. T.-Y. Kim, K. Kim, and J.-H. Kim, “Deep reinforcement learning based sar image pre-processing algorithm with finite buffer leo satellite networks,” in 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), 2022, pp. 2207–2209.
  28. N. Xu, C. Huo, X. Zhang, Y. Cao, and C. Pan, “Hyperparameter configuration learning for ship detection from synthetic aperture radar images,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.
  29. A. Viros-i Martin, D. Selva, and R. Alimo, “Scheduling mission reconfiguration for an interferometry synthetic aperture radar using deep reinforcement learning,” in IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2020, pp. 6941–6944.
  30. F. Xu and Y.-Q. Jin, “Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 5, pp. 1495–1505, 2009.
  31. D.-X. Yue and F. Xu, “A coherent generative scheme for sar image representation,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.   IEEE, 2021, pp. 427–430.
  32. M. Zhang, Y. Zhao, J.-X. Li, and P.-B. Wei, “Reliable approach for composite scattering calculation from ship over a sea surface based on fbam and go-po models,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 2, pp. 775–784, 2016.
  33. S. Fu and F. Xu, “Differentiable sar renderer and image-based target reconstruction,” IEEE Transactions on Image Processing, vol. 31, pp. 6679–6693, 2022.
  34. M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforcement learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
  35. AFRL, “The air force moving and stationary target recognition database,” pp. https://www.sdms.afrl.af.mil/–datasets/mstar/, 2016.
  36. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,” arXiv preprint arXiv:2304.02643, 2023.
  37. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yanni Wang (3 papers)
  2. Hecheng Jia (4 papers)
  3. Shilei Fu (4 papers)
  4. Huiping Lin (3 papers)
  5. Feng Xu (180 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.