Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Vietnamese Poem Generation & The Prospect Of Cross-Language Poem-To-Poem Translation (2401.01078v3)

Published 2 Jan 2024 in cs.CL and cs.AI

Abstract: Poetry generation has been a challenging task in the field of Natural Language Processing, as it requires the model to understand the nuances of language, sentiment, and style. In this paper, we propose using LLMs to generate Vietnamese poems of various genres from natural language prompts, thereby facilitating an intuitive process with enhanced content control. Our most efficacious model, the GPT-3 Babbage variant, achieves a custom evaluation score of 0.8, specifically tailored to the "luc bat" genre of Vietnamese poetry. Furthermore, we also explore the idea of paraphrasing poems into normal text prompts and yield a relatively high score of 0.781 in the "luc bat" genre. This experiment presents the potential for cross-Language poem-to-poem translation with translated poems as the inputs while concurrently maintaining complete control over the generated content.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.
  2. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” 2020.
  3. T. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hesslow, R. Castagné, A. Luccioni, F. Yvon, M. Gallé, J. Tow, A. Rush, S. Biderman, A. Webson, P. Ammanamanchi, T. Wang, B. Sagot, N. Muennighoff, A. Moral, and T. Wolf, “Bloom: A 176b-parameter open-access multilingual language model,” 11 2022.
  4. H. Gonçalo Oliveira, “Poetryme: a versatile platform for poetry generation,” vol. 1, article 21, 08 2012.
  5. R. Yan, H. Jiang, M. Lapata, s.-d. Lin, X. Lv, and X. Li, “I, poet: Automatic chinese poetry composition through a generative summarization framework under constrained optimization,” 08 2013, pp. 2197–2203.
  6. L. Jiang and M. Zhou, “Generating chinese couplets using a statistical mt approach.” vol. 1, 01 2008, pp. 377–384.
  7. Z. Wang, W. He, H. Wu, H. Wu, W. Li, H. Wang, and E. Chen, “Chinese poetry generation with planning based neural network,” 2016.
  8. Q. Wang, T. Luo, D. Wang, and C. Xing, “Chinese song iambics generation with neural attention-based model,” 2016.
  9. M. C. Santillan and A. P. Azcarraga, “Poem generation using transformers and doc2vec embeddings,” in 2020 International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–7.
  10. T. Nguyen, H. Pham, T. Bui, T. Nguyen, D. Luong, and P. Nguyen, “Sp-gpt2: Semantics improvement in vietnamese poetry generation,” 2021.
  11. J. Ye, X. Chen, N. Xu, C. Zu, Z. Shao, S. Liu, Y. Cui, Z. Zhou, C. Gong, Y. Shen, J. Zhou, S. Chen, T. Gui, Q. Zhang, and X. Huang, “A comprehensive capability analysis of gpt-3 and gpt-3.5 series models,” 2023.
  12. P. Sawicki, M. Grzes, F. Goes, D. Brown, M. Peeperkorn, and A. Khatun, “Bits of grass: Does gpt already know how to write like whitman?” 2023.
  13. R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient inference: A whitepaper,” 2018.
  14. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” 2021.
  15. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” 2019.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.