Papers
Topics
Authors
Recent
2000 character limit reached

Class Relevance Learning For Out-of-distribution Detection (2401.01021v1)

Published 21 Sep 2023 in cs.CV and cs.LG

Abstract: Image classification plays a pivotal role across diverse applications, yet challenges persist when models are deployed in real-world scenarios. Notably, these models falter in detecting unfamiliar classes that were not incorporated during classifier training, a formidable hurdle for safe and effective real-world model deployment, commonly known as out-of-distribution (OOD) detection. While existing techniques, like max logits, aim to leverage logits for OOD identification, they often disregard the intricate interclass relationships that underlie effective detection. This paper presents an innovative class relevance learning method tailored for OOD detection. Our method establishes a comprehensive class relevance learning framework, strategically harnessing interclass relationships within the OOD pipeline. This framework significantly augments OOD detection capabilities. Extensive experimentation on diverse datasets, encompassing generic image classification datasets (Near OOD and Far OOD datasets), demonstrates the superiority of our method over state-of-the-art alternatives for OOD detection.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.