Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Net-Zero Carbon Emissions in Network AI for 6G and Beyond (2401.01007v1)

Published 18 Sep 2023 in cs.NI, cs.AI, and cs.DC

Abstract: A global effort has been initiated to reduce the worldwide greenhouse gas (GHG) emissions, primarily carbon emissions, by half by 2030 and reach net-zero by 2050. The development of 6G must also be compliant with this goal. Unfortunately, developing a sustainable and net-zero emission systems to meet the users' fast growing demands on mobile services, especially smart services and applications, may be much more challenging than expected. Particularly, despite the energy efficiency improvement in both hardware and software designs, the overall energy consumption and carbon emission of mobile networks are still increasing at a tremendous speed. The growing penetration of resource-demanding AI algorithms and solutions further exacerbate this challenge. In this article, we identify the major emission sources and introduce an evaluation framework for analyzing the lifecycle of network AI implementations. A novel joint dynamic energy trading and task allocation optimization framework, called DETA, has been introduced to reduce the overall carbon emissions. We consider a federated edge intelligence-based network AI system as a case study to verify the effectiveness of our proposed solution. Experimental results based on a hardware prototype suggest that our proposed solution can reduce carbon emissions of network AI systems by up to 74.9%. Finally, open problems and future directions are discussed.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: