Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum and Classical Communication Complexity of Permutation-Invariant Functions (2401.00454v1)

Published 31 Dec 2023 in cs.CC and quant-ph

Abstract: This paper gives a nearly tight characterization of the quantum communication complexity of the permutation-invariant Boolean functions. With such a characterization, we show that the quantum and randomized communication complexity of the permutation-invariant Boolean functions are quadratically equivalent (up to a logarithmic factor). Our results extend a recent line of research regarding query complexity \cite{AA14, Cha19, BCG+20} to communication complexity, showing symmetry prevents exponential quantum speedups. Furthermore, we show the Log-rank Conjecture holds for any non-trivial total permutation-invariant Boolean function. Moreover, we establish a relationship between the quantum/classical communication complexity and the approximate rank of permutation-invariant Boolean functions. This implies the correctness of the Log-approximate-rank Conjecture for permutation-invariant Boolean functions in both randomized and quantum settings (up to a logarithmic factor).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Scott Aaronson. How much structure is needed for huge quantum speedups? arXiv preprint, 2022. arXiv:2209.06930.
  2. The need for structure in quantum speedups. Theory of Computing, 10:133–166, 2014. doi:10.4086/toc.2014.v010a006.
  3. Sculpting quantum speedups. In Proceedings of the 31st Conference on Computational Complexity, volume 50, pages 26:1–26:28, 2016. doi:10.4230/LIPIcs.CCC.2016.26.
  4. Quantum lower bounds for the collision and the element distinctness problems. Journal of ACM, 51(4):595–605, 2004. doi:10.1145/1008731.1008735.
  5. Quantum log-approximate-rank conjecture is also false. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 982–994, 2019. doi:10.1109/FOCS.2019.00063.
  6. Exponential separation of quantum communication and classical information. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 277–288. ACM, 2017. doi:10.1145/3055399.3055401.
  7. Exponential separation of quantum and classical one-way communication complexity. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pages 128–137. ACM, 2004. doi:10.1145/1007352.1007379.
  8. Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. doi:10.1145/502090.502097.
  9. Quantum communication complexity of distribution testing. Quantum Information and Computation, 21(15&16):1261–1273, 2021. doi:10.26421/QIC21.15-16-1.
  10. Shalev Ben-David. The structure of promises in quantum speedups. In Proceedings of the 11th Conference on the Theory of Quantum Computation, Communication and Cryptography, volume 61, pages 7:1–7:14, 2016. doi:10.4230/LIPIcs.TQC.2016.7.
  11. Symmetries, graph properties, and quantum speedups. In Proceedings of the 61st IEEE Annual Symposium on Foundations of Computer Science, pages 649–660, 2020. doi:10.1109/FOCS46700.2020.00066.
  12. An additive combinatorics approach relating rank to communication complexity. J. ACM, 61(4), 2014. doi:10.1145/2629598.
  13. Quantum amplitude amplification and estimation. Contemporary Mathematics, 305:53–74, 2002.
  14. Quantum advantage with noisy shallow circuits in 3D. In Proccedings of the 60th IEEE Annual Symposium on Foundations of Computer Science, pages 995–999, 2019. doi:10.1109/FOCS.2019.00064.
  15. A communication complexity proof that symmetric functions have logarithmic depth. BRICS, 1995.
  16. Communication complexity lower bounds by polynomials. In Proceedings of the 16th Annual IEEE Conference on Computational Complexity, pages 120–130, 2001. doi:10.1109/CCC.2001.933879.
  17. André Chailloux. A note on the quantum query complexity of permutation symmetric functions. In Proceedings of the 10th Innovations in Theoretical Computer Science Conference, volume 124, pages 19:1–19:7, 2019. doi:10.4230/LIPIcs.ITCS.2019.19.
  18. An optimal lower bound on the communication complexity of gap-hamming-distance. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, page 51–60, 2011. doi:10.1145/1993636.1993644.
  19. An optimal lower bound on the communication complexity of Gap-Hamming-Distance. SIAM Journal on Computing, 41(5):1299–1317, 2012. doi:10.1137/120861072.
  20. The log-approximate-rank conjecture is false. J. ACM, 67(4), jun 2020. doi:10.1145/3396695.
  21. Exponential separations between learning with and without quantum memory. In Proccedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science, pages 574–585, 2021. doi:10.1109/FOCS52979.2021.00063.
  22. Exponential separations for one-way quantum communication complexity, with applications to cryptography. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pages 516–525. ACM, 2007. doi:10.1145/1250790.1250866.
  23. Exponential separation of quantum and classical non-interactive multi-party communication complexity. In Proceedings of the 23rd Annual IEEE Conference on Computational Complexity, pages 332–339. IEEE Computer Society, 2008. doi:10.1109/CCC.2008.27.
  24. Communication complexity of permutation-invariant functions. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1902–1921, 2016. doi:10.1137/1.9781611974331.ch134.
  25. Interactive shallow clifford circuits: quantum advantage against NC11{{}^{1}}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT and beyond. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 875–888, 2020. doi:10.1145/3357713.3384332.
  26. L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th IEEE Annual Symposium on Theory of Computing, pages 212–219, 1996. doi:10.1109/FOCS46700.2020.00066.
  27. Quantum chebyshev’s inequality and applications. In Proceedings of the 46th International Colloquium on Automata, Languages, and Programming, volume 132, pages 69:1–69:16, 2019. doi:10.4230/LIPIcs.ICALP.2019.69.
  28. The communication complexity of the Hamming distance problem. Information Processing Letter, 99(4):149–153, 2006. doi:10.1016/j.ipl.2006.01.014.
  29. John Kallaugher. A quantum advantage for a natural streaming problem. In Proccedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science, pages 897–908, 2021. doi:10.1109/FOCS52979.2021.00091.
  30. A lower bound for agnostically learning disjunctions. In Proceeding of the 20th Annual Conference on Learning Theory, volume 4539, pages 409–423. Springer, 2007. doi:10.1007/978-3-540-72927-3_30.
  31. Log-rank and lifting for and-functions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, page 197–208, 2021. doi:10.1145/3406325.3450999.
  32. Communication complexity. Cambridge University Press, 1997.
  33. An approximation algorithm for approximation rank. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, pages 351–357. IEEE Computer Society, 2009. doi:10.1109/CCC.2009.25.
  34. L. Lovasz and M. Saks. Lattices, mobius functions and communications complexity. In Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pages 81–90, 1988. doi:10.1109/SFCS.1988.21924.
  35. Shachar Lovett. Communication is bounded by root of rank. J. ACM, 63(1), 2016. doi:10.1145/2724704.
  36. Ashley Montanaro. A new exponential separation between quantum and classical one-way communication complexity. Quantum Information and Computation, 11(7&8):574–591, 2011. doi:10.26421/QIC11.7-8-3.
  37. Ramamohan Paturi. On the degree of polynomials that approximate symmetric boolean functions (preliminary version). In Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 468–474. ACM, 1992. doi:10.1145/129712.129758.
  38. Ran Raz. Exponential separation of quantum and classical communication complexity. In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pages 358–367. ACM, 1999. doi:10.1145/301250.301343.
  39. Alexander A Razborov. Quantum communication complexity of symmetric predicates. Izvestiya: Mathematics, 67(1):145, 2003. doi:10.1070/IM2003v067n01ABEH000422.
  40. Alexander A. Sherstov. The pattern matrix method. SIAM Journal of Computing, 40(6):1969–2000, 2011. doi:10.1137/080733644.
  41. Alexander A. Sherstov. The communication complexity of gap Hamming distance. Theory of Computing, 8(1):197–208, 2012. doi:10.4086/toc.2012.v008a008.
  42. Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages 124–134, November 1994. doi:10.1109/SFCS.1994.365700.
  43. Daniel R. Simon. On the power of quantum computation. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages 116–123, November 1994. doi:10.1109/SFCS.1994.365701.
  44. Exponential separation between quantum communication and logarithm of approximate rank. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 966–981, 2019. doi:10.1109/FOCS.2019.00062.
  45. Daiki Suruga. Matching upper bounds on symmetric predicates in quantum communication complexity. arXiv preprint, 2006. arXiv:2301.00370.
  46. Thomas Vidick. A concentration inequality for the overlap of a vector on a large set, with application to the communication complexity of the Gap-Hamming-Distance problem. Chicago Journal of Theoretical Computer Science, 2012, 2012. URL: http://cjtcs.cs.uchicago.edu/articles/2012/1/contents.html.
  47. Verifiable quantum advantage without structure. In Proceedings of the 63rd IEEE Annual Symposium on Foundations of Computer Science, pages 69–74, 2022. doi:10.1109/FOCS54457.2022.00014.
  48. Communication complexities of symmetric XOR functions. Quantum Information and Computation, 9(3&4):255–263, 2009. doi:10.26421/QIC9.3-4-5.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ziyi Guan (4 papers)
  2. Yunqi Huang (6 papers)
  3. Penghui Yao (42 papers)
  4. Zekun Ye (14 papers)

Summary

We haven't generated a summary for this paper yet.