Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

User Clustering for STAR-RIS Assisted Full-Duplex NOMA Communication Systems (2401.00447v1)

Published 31 Dec 2023 in cs.IT, eess.SP, and math.IT

Abstract: In contrast to conventional reconfigurable intelligent surface (RIS), simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) has been proposed recently to enlarge the serving area from 180o to 360o coverage. This work considers the performance of a STAR-RIS aided full-duplex (FD) non-orthogonal multiple access (NOMA) communication systems. The STAR-RIS is implemented at the cell-edge to assist the cell-edge users, while the cell-center users can communicate directly with a FD base station (BS). We first introduce new user clustering schemes for the downlink and uplink transmissions. Then, based on the proposed transmission schemes closed-form expressions of the ergodic rates in the downlink and uplink modes are derived taking into account the system impairments caused by the self interference at the FD-BS and the imperfect successive interference cancellation (SIC). Moreover, an optimization problem to maximize the total sum-rate is formulated and solved by optimizing the amplitudes and the phase-shifts of the STAR-RIS elements and allocating the transmit power efficiently. The performance of the proposed user clustering schemes and the optimal STAR-RIS design are investigated through numerical results

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2450–2525, 2020.
  2. C. Pan, H. Ren, K. Wang, J. F. Kolb, M. Elkashlan, M. Chen, M. Di Renzo, Y. Hao, J. Wang, A. L. Swindlehurst, X. You, and L. Hanzo, “Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions,” IEEE Communications Magazine, vol. 59, no. 6, pp. 14–20, 2021.
  3. A. Salem, K.-K. Wong, and C.-B. Chae, “Impact of phase-shift error on the secrecy performance of uplink ris communication systems,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  4. ——, “Impact of phase-shift error on the secrecy performance of uplink RIS communication systems,” 2023. [Online]. Available: https://arxiv.org/abs/2301.00276
  5. S. Zhang and R. Zhang, “Capacity characterization for intelligent reflecting surface aided mimo communication,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1823–1838, 2020.
  6. J. Zhang, J. Liu, S. Ma, C.-K. Wen, and S. Jin, “Large system achievable rate analysis of RIS-assisted MIMO wireless communication with statistical CSIT,” IEEE Transactions on Wireless Communications, vol. 20, no. 9, pp. 5572–5585, 2021.
  7. K. Xu, J. Zhang, X. Yang, S. Ma, and G. Yang, “On the sum-rate of RIS-assisted MIMO multiple-access channels over spatially correlated Rician fading,” IEEE Transactions on Communications, vol. 69, no. 12, pp. 8228–8241, 2021.
  8. K. Zhi, C. Pan, H. Ren, and K. Wang, “Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI,” IEEE Transactions on Communications, vol. 70, no. 5, pp. 3558–3574, 2022.
  9. Y. Liu, X. Mu, J. Xu, R. Schober, Y. Hao, H. V. Poor, and L. Hanzo, “STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces,” IEEE Wireless Communications, vol. 28, no. 6, pp. 102–109, 2021.
  10. X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications,” IEEE Transactions on Wireless Communications, vol. 21, no. 5, pp. 3083–3098, 2022.
  11. J. Xu, Y. Liu, X. Mu, R. Schober, and H. V. Poor, “STAR-RISs: A correlated t and r phase-shift model and practical phase-shift configuration strategies,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 5, pp. 1097–1111, 2022.
  12. H. Liu, G. Li, X. Li, Y. Liu, G. Huang, and Z. Ding, “Effective capacity analysis of STAR-RIS-assisted NOMA networks,” IEEE Wireless Communications Letters, vol. 11, no. 9, pp. 1930–1934, 2022.
  13. Z. Xie, W. Yi, X. Wu, Y. Liu, and A. Nallanathan, “STAR-RIS aided NOMA in multicell networks: A general analytical framework with gamma distributed channel modeling,” IEEE Transactions on Communications, vol. 70, no. 8, pp. 5629–5644, 2022.
  14. H. Ma, H. Wang, H. Li, and Y. Feng, “Transmit power minimization for STAR-RIS-empowered uplink NOMA system,” IEEE Wireless Communications Letters, vol. 11, no. 11, pp. 2430–2434, 2022.
  15. F. Fang, B. Wu, S. Fu, Z. Ding, and X. Wang, “Energy-efficient design of STAR-RIS aided MIMO-NOMA networks,” IEEE Transactions on Communications, vol. 71, no. 1, pp. 498–511, 2023.
  16. J. Chen and X. Yu, “Ergodic rate analysis and phase design of STAR-RIS aided NOMA with statistical CSI,” IEEE Communications Letters, vol. 26, no. 12, pp. 2889–2893, 2022.
  17. J. Zuo, Y. Liu, Z. Ding, L. Song, and H. V. Poor, “Joint design for simultaneously transmitting and reflecting (STAR) RIS assisted NOMA systems,” IEEE Transactions on Wireless Communications, vol. 22, no. 1, pp. 611–626, 2023.
  18. X. Yue, J. Xie, Y. Liu, Z. Han, R. Liu, and Z. Ding, “Simultaneously transmitting and reflecting reconfigurable intelligent surface assisted NOMA networks,” IEEE Transactions on Wireless Communications, vol. 22, no. 1, pp. 189–204, 2023.
  19. T. Riihonen, S. Werner, and R. Wichman, “Hybrid full-duplex/half-duplex relaying with transmit power adaptation,” IEEE Transactions on Wireless Communications, vol. 10, no. 9, pp. 3074–3085, 2011.
  20. G. Zheng, I. Krikidis, and B. o. Ottersten, “Full-duplex cooperative cognitive radio with transmit imperfections,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 2498–2511, 2013.
  21. Z. Peng, Z. Zhang, C. Pan, L. Li, and A. L. Swindlehurst, “Multiuser full-duplex two-way communications via intelligent reflecting surface,” IEEE Transactions on Signal Processing, vol. 69, pp. 837–851, 2021.
  22. P. Guan, Y. Wang, H. Yu, and Y. Zhao, “Joint beamforming optimization for RIS-aided full-duplex communication,” IEEE Wireless Communications Letters, vol. 11, no. 8, pp. 1629–1633, 2022.
  23. Y. Cai, M.-M. Zhao, K. Xu, and R. Zhang, “Intelligent reflecting surface aided full-duplex communication: Passive beamforming and deployment design,” IEEE Transactions on Wireless Communications, vol. 21, no. 1, pp. 383–397, 2022.
  24. P. K. Sharma, N. Sharma, S. Dhok, and A. Singh, “RIS-assisted FD short packet communication with non-linear EH,” IEEE Communications Letters, vol. 27, no. 2, pp. 522–526, 2023.
  25. A. Salem, K.-K. Wong, C.-B. Chae, and Y. Zhang, “Star-ris assisted full-duplex communication networks,” arXiv preprint arXiv:2309.15037, 2023.
  26. K. Wang, W. Liang, Y. Yuan, Y. Liu, Z. Ma, and Z. Ding, “User clustering and power allocation for hybrid non-orthogonal multiple access systems,” IEEE Transactions on Vehicular Technology, vol. 68, no. 12, pp. 12 052–12 065, 2019.
  27. D. Kudathanthirige and G. A. A. Baduge, “NOMA-aided multicell downlink massive MIMO,” IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 3, pp. 612–627, 2019.
  28. M. S. Ali, H. Tabassum, and E. Hossain, “Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems,” IEEE Access, vol. 4, pp. 6325–6343, 2016.
  29. B. Di, L. Song, and Y. Li, “Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple access networks,” IEEE Transactions on Wireless Communications, vol. 15, no. 11, pp. 7686–7698, 2016.
  30. M. Liu, J. Zhang, K. Xiong, M. Zhang, P. Fan, and K. B. Letaief, “Effective user clustering and power control for multiantenna uplink NOMA transmission,” IEEE Transactions on Wireless Communications, vol. 21, no. 11, pp. 8995–9009, 2022.
  31. Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V. Poor, “Application of non-orthogonal multiple access in LTE and 5G networks,” IEEE Communications Magazine, vol. 55, no. 2, pp. 185–191, 2017.
  32. M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V. Poor, “Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2413–2424, 2017.
  33. Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6010–6023, 2016.
  34. H. V. Nguyen, V.-D. Nguyen, O. A. Dobre, D. N. Nguyen, E. Dutkiewicz, and O.-S. Shin, “Joint power control and user association for NOMA-based full-duplex systems,” IEEE Transactions on Communications, vol. 67, no. 11, pp. 8037–8055, 2019.
  35. W. Liang, Z. Ding, Y. Li, and L. Song, “User pairing for downlink non-orthogonal multiple access networks using matching algorithm,” IEEE Transactions on Communications, vol. 65, no. 12, pp. 5319–5332, 2017.
  36. Y. Zhou, V. W. Wong, and R. Schober, “Dynamic decode-and-forward based cooperative NOMA with spatially random users,” IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 3340–3356, 2018.
  37. E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” IEEE Transactions on Wireless Communications, vol. 13, no. 2, pp. 680–694, 2014.
  38. E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-duplex systems,” IEEE Transactions on Wireless Communications, vol. 14, no. 7, pp. 3519–3532, 2015.
  39. Y. Sun, D. W. K. Ng, Z. Ding, and R. Schober, “Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems,” IEEE Transactions on Communications, vol. 65, no. 3, pp. 1077–1091, 2017.
  40. A. Abrardo, M. Moretti, and F. Saggese, “Power and subcarrier allocation in 5G NOMA-FD systems,” IEEE Transactions on Wireless Communications, vol. 19, no. 12, pp. 8246–8260, 2020.
  41. A. Papazafeiropoulos, P. Kourtessis, and I. Krikidis, “Star-ris assisted full-duplex systems: Impact of correlation and maximization,” IEEE Communications Letters, vol. 26, no. 12, pp. 3004–3008, 2022.
  42. A. Salem, C. Masouros, and K.-K. Wong, “Sum rate and fairness analysis for the mu-mimo downlink under psk signalling: Interference suppression vs exploitation,” IEEE Transactions on Communications, vol. 67, no. 9, pp. 6085–6098, 2019.
  43. ——, “On the secrecy performance of interference exploitation with psk: A non-gaussian signaling analysis,” IEEE Transactions on Wireless Communications, vol. 20, no. 11, pp. 7100–7117, 2021.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube