Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GAN-GA: A Generative Model based on Genetic Algorithm for Medical Image Generation (2401.00314v1)

Published 30 Dec 2023 in eess.IV, cs.CV, cs.LG, and cs.NE

Abstract: Medical imaging is an essential tool for diagnosing and treating diseases. However, lacking medical images can lead to inaccurate diagnoses and ineffective treatments. Generative models offer a promising solution for addressing medical image shortage problems due to their ability to generate new data from existing datasets and detect anomalies in this data. Data augmentation with position augmentation methods like scaling, cropping, flipping, padding, rotation, and translation could lead to more overfitting in domains with little data, such as medical image data. This paper proposes the GAN-GA, a generative model optimized by embedding a genetic algorithm. The proposed model enhances image fidelity and diversity while preserving distinctive features. The proposed medical image synthesis approach improves the quality and fidelity of medical images, an essential aspect of image interpretation. To evaluate synthesized images: Frechet Inception Distance (FID) is used. The proposed GAN-GA model is tested by generating Acute lymphoblastic leukemia (ALL) medical images, an image dataset, and is the first time to be used in generative models. Our results were compared to those of InfoGAN as a baseline model. The experimental results show that the proposed optimized GAN-GA enhances FID scores by about 6.8\%, especially in earlier training epochs. The source code and dataset will be available at: https://github.com/Mustafa-AbdulRazek/InfoGAN-GA.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.