Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Wasserstein Distributionally Robust Regret-Optimal Control in the Infinite-Horizon (2312.17376v1)

Published 28 Dec 2023 in eess.SY, cs.SY, and math.OC

Abstract: We investigate the Distributionally Robust Regret-Optimal (DR-RO) control of discrete-time linear dynamical systems with quadratic cost over an infinite horizon. Regret is the difference in cost obtained by a causal controller and a clairvoyant controller with access to future disturbances. We focus on the infinite-horizon framework, which results in stability guarantees. In this DR setting, the probability distribution of the disturbances resides within a Wasserstein-2 ambiguity set centered at a specified nominal distribution. Our objective is to identify a control policy that minimizes the worst-case expected regret over an infinite horizon, considering all potential disturbance distributions within the ambiguity set. In contrast to prior works, which assume time-independent disturbances, we relax this constraint to allow for time-correlated disturbances, thus actual distributional robustness. While we show that the resulting optimal controller is non-rational and lacks a finite-dimensional state-space realization, we demonstrate that it can still be uniquely characterized by a finite dimensional parameter. Exploiting this fact, we introduce an efficient numerical method to compute the controller in the frequency domain using fixed-point iterations. This method circumvents the computational bottleneck associated with the finite-horizon problem, where the semi-definite programming (SDP) solution dimension scales with the time horizon. Numerical experiments demonstrate the effectiveness and performance of our framework.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Wasserstein Tube MPC with Exact Uncertainty Propagation, April 2023a. URL http://arxiv.org/abs/2304.12093. arXiv:2304.12093 [math].
  2. Capture, Propagate, and Control Distributional Uncertainty, April 2023b. URL http://arxiv.org/abs/2304.02235. arXiv:2304.02235 [math].
  3. Dimitri Bertsekas. Nonlinear programming, volume 4. Athena scientific, 2016.
  4. Andrea Braides. Gamma-Convergence for Beginners. Oxford University Press, July 2002. ISBN 978-0-19-850784-0. 10.1093/acprof:oso/9780198507840.001.0001. URL https://academic.oup.com/book/1987.
  5. Distributionally robust infinite-horizon control: from a pool of samples to the design of dependable controllers, 2023.
  6. Gianni Dal Maso. An Introduction to Γnormal-Γ\Gammaroman_Γ-Convergence. Birkhäuser Boston, Boston, MA, 1993. ISBN 978-1-4612-6709-6 978-1-4612-0327-8. 10.1007/978-1-4612-0327-8. URL http://link.springer.com/10.1007/978-1-4612-0327-8.
  7. A system-level approach to regret optimal control. IEEE Control Systems Letters, 6:2792–2797, 2022.
  8. State-space solutions to standard h2subscriptℎ2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and h∞subscriptℎh_{\infty}italic_h start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control problems. In 1988 American Control Conference, pages 1691–1696, Atlanta, GA, USA, June 1988. IEEE. 10.23919/ACC.1988.4789992. URL https://ieeexplore.ieee.org/document/4789992/.
  9. John C. Doyle. Structured uncertainty in control system design. In 1985 24th IEEE Conference on Decision and Control, pages 260–265, 1985. 10.1109/CDC.1985.268842.
  10. Lasha Ephremidze. An Elementary Proof of the Polynomial Matrix Spectral Factorization Theorem, November 2010. URL http://arxiv.org/abs/1011.3777. arXiv:1011.3777 [math].
  11. On the Algorithmization of Janashia-Lagvilava Matrix Spectral Factorization Method. IEEE Transactions on Information Theory, 64(2):728–737, February 2018. ISSN 0018-9448, 1557-9654. 10.1109/TIT.2017.2772877. URL http://ieeexplore.ieee.org/document/8105834/.
  12. Fatou’s Lemma in Its Classic Form and Lebesgue’s Convergence Theorems for Varying Measures with Applications to MDPs, June 2019. URL http://arxiv.org/abs/1902.01525. arXiv:1902.01525 [math].
  13. Distributionally Robust Stochastic Optimization with Wasserstein Distance, April 2022. URL http://arxiv.org/abs/1604.02199. arXiv:1604.02199 [math].
  14. Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification. IEEE Transactions on Information Theory, 47(3):1243–1251, March 2001. ISSN 00189448. 10.1109/18.915697. URL http://ieeexplore.ieee.org/document/915697/.
  15. Regret-optimal measurement-feedback control. In Learning for Dynamics and Control, pages 1270–1280. PMLR, 2021a.
  16. Regret-optimal control in dynamic environments, February 2021b. URL http://arxiv.org/abs/2010.10473. arXiv:2010.10473 [cs, eess, math].
  17. Regret-optimal estimation and control. IEEE Transactions on Automatic Control, 68(5):3041–3053, 2023.
  18. Robert M. Gray. Toeplitz and Circulant Matrices: A Review. Foundations and Trends® in Communications and Information Theory, 2(3):155–239, 2005. ISSN 1567-2190, 1567-2328. 10.1561/0100000006. URL http://www.nowpublishers.com/article/Details/CIT-006.
  19. Asymptotically Equivalent Sequences of Matrices and Hermitian Block Toeplitz Matrices With Continuous Symbols: Applications to MIMO Systems. IEEE Transactions on Information Theory, 54(12):5671–5680, December 2008. ISSN 0018-9448. 10.1109/TIT.2008.2006401. URL http://ieeexplore.ieee.org/document/4675730/.
  20. Jesú Gutiérrez-Gutiérrez. Block Toeplitz Matrices: Asymptotic Results and Applications. Foundations and Trends® in Communications and Information Theory, 8(3):179–257, 2011. ISSN 1567-2190, 1567-2328. 10.1561/0100000066. URL http://www.nowpublishers.com/article/Details/CIT-066.
  21. Wasserstein Distributionally Robust Regret-Optimal Control under Partial Observability, July 2023a. URL http://arxiv.org/abs/2307.04966. arXiv:2307.04966 [math].
  22. Regret-Optimal Control under Partial Observability, November 2023b. URL http://arxiv.org/abs/2311.06433. arXiv:2311.06433 [cs, eess, math].
  23. Wasserstein distributionally robust control of partially observable linear systems: Tractable approximation and performance guarantee. In 2022 IEEE 61st Conference on Decision and Control (CDC), pages 4800–4807. IEEE, 2022.
  24. Indefinite-Quadratic Estimation and Control. Society for Industrial and Applied Mathematics, 1999. 10.1137/1.9781611970760. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611970760.
  25. Linear estimation. Prentice Hall information and system sciences series. Prentice Hall, Upper Saddle River, N.J, 2000. ISBN 978-0-13-022464-4.
  26. R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1):35–45, March 1960. ISSN 0021-9223. 10.1115/1.3662552.
  27. Distributional robustness in minimax linear quadratic control with Wasserstein distance, February 2021. URL http://arxiv.org/abs/2102.12715. arXiv:2102.12715 [cs, eess, math].
  28. F. Leibfritz and W. Lipinski. Description of the benchmark examples in compleib 1.0. Dept. Math, Univ. Trier, Germany, 32, 2003.
  29. Data-Driven Distributionally Robust Optimal Control with State-Dependent Noise, August 2023. URL http://arxiv.org/abs/2303.02293. arXiv:2303.02293 [cs].
  30. Safe control with minimal regret. In Learning for Dynamics and Control Conference, pages 726–738. PMLR, 2022.
  31. Closing the Gap to Quadratic Invariance: a Regret Minimization Approach to Optimal Distributed Control, November 2023. URL http://arxiv.org/abs/2311.02068. arXiv:2311.02068 [cs, eess].
  32. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Mathematical Programming, 171(1-2):115–166, September 2018. ISSN 0025-5610, 1436-4646. 10.1007/s10107-017-1172-1. URL http://link.springer.com/10.1007/s10107-017-1172-1.
  33. H.I. Nurdin. A New Approach to Spectral Factorization of a Class of Matrix-Valued Spectral Densities. In Proceedings of the 44th IEEE Conference on Decision and Control, pages 5929–5934, Seville, Spain, 2005. IEEE. ISBN 978-0-7803-9567-1. 10.1109/CDC.2005.1583110. URL http://ieeexplore.ieee.org/document/1583110/.
  34. C. Rino. Factorization of spectra by discrete Fourier transforms (Corresp.). IEEE Transactions on Information Theory, 16(4):484–485, July 1970. ISSN 0018-9448. 10.1109/TIT.1970.1054502. URL http://ieeexplore.ieee.org/document/1054502/.
  35. Regret-Optimal Filtering for Prediction and Estimation. IEEE Transactions on Signal Processing, 70:5012–5024, 2022. ISSN 1053-587X, 1941-0476. 10.1109/TSP.2022.3212153. URL https://ieeexplore.ieee.org/document/9911672/.
  36. Regret-optimal controller for the full-information problem. In 2021 American Control Conference (ACC), pages 4777–4782. IEEE, 2021.
  37. Data-driven distributionally robust control of energy storage to manage wind power fluctuations. In 2017 IEEE Conference on Control Technology and Applications (CCTA), pages 199–204, 2017. 10.1109/CCTA.2017.8062463.
  38. Filippo Santambrogio. Optimal transport for applied mathematicians. 2015.
  39. Distributionally robust linear quadratic control. arXiv preprint arXiv:2305.17037, 2023.
  40. Dynamic Programming Subject to Total Variation Distance Ambiguity, February 2014. URL http://arxiv.org/abs/1402.1009. arXiv:1402.1009 [math].
  41. Robust Linear Quadratic Regulator for uncertain systems. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 1515–1520, Las Vegas, NV, USA, December 2016. IEEE. ISBN 978-1-5090-1837-6. 10.1109/CDC.2016.7798481. URL http://ieeexplore.ieee.org/document/7798481/.
  42. P. M. E. M. van der Grinten. Uncertainty in measurement and control. Statistica Neerlandica, 22(1):43–63, 1968. https://doi.org/10.1111/j.1467-9574.1960.tb00617.x.
  43. Cédric Villani. Optimal transport: old and new. Number 338 in Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 2009. ISBN 978-3-540-71049-3. OCLC: ocn244421231.
  44. A distributionally robust approach to regret optimal control using the wasserstein distance, 2023.
  45. Insoon Yang. Wasserstein distributionally robust stochastic control: A data-driven approach. IEEE Transactions on Automatic Control, 66(8):3863–3870, 2020.
  46. G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, 26(2):301–320, April 1981. ISSN 0018-9286. 10.1109/TAC.1981.1102603. URL http://ieeexplore.ieee.org/document/1102603/.
  47. Nonlinear wasserstein distributionally robust optimal control. arXiv preprint arXiv:2304.07415, 2023.
  48. Robust and optimal control. Prentice Hall, Upper Saddle River, N.J, 1996. ISBN 978-0-13-456567-5.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.