Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient High-Quality Clustering for Large Bipartite Graphs (2312.16926v1)

Published 28 Dec 2023 in cs.SI and cs.LG

Abstract: A bipartite graph contains inter-set edges between two disjoint vertex sets, and is widely used to model real-world data, such as user-item purchase records, author-article publications, and biological interactions between drugs and proteins. k-Bipartite Graph Clustering (k-BGC) is to partition the target vertex set in a bipartite graph into k disjoint clusters. The clustering quality is important to the utility of k-BGC in various applications like social network analysis, recommendation systems, text mining, and bioinformatics, to name a few. Existing approaches to k-BGC either output clustering results with compromised quality due to inadequate exploitation of high-order information between vertices, or fail to handle sizable bipartite graphs with billions of edges. Motivated by this, this paper presents two efficient k-BGC solutions, HOPE and HOPE+, which achieve state-of-the-art performance on large-scale bipartite graphs. HOPE obtains high scalability and effectiveness through a new k-BGC problem formulation based on the novel notion of high-order perspective (HOP) vectors and an efficient technique for low-rank approximation of HOP vectors. HOPE+ further elevates the k-BGC performance to another level with a judicious problem transformation and a highly efficient two-stage optimization framework. Two variants, HOPE+ (FNEM) and HOPE+ (SNEM) are designed when either the Frobenius norm or spectral norm is applied in the transformation. Extensive experiments, comparing HOPE and HOPE+ against 13 competitors on 10 real-world datasets, exhibit that our solutions, especially HOPE+, are superior to existing methods in terms of result quality, while being up to orders of magnitude faster. On the largest dataset MAG with 1.1 billion edges, HOPE+ is able to produce clusters with the highest clustering accuracy within 31 minutes, which is unmatched by any existing solution for k-BGC.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)