Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Learning for Scattered Point Cloud Understanding with Hierarchical Self-Distillation (2312.16902v3)

Published 28 Dec 2023 in cs.CV

Abstract: Numerous point-cloud understanding techniques focus on whole entities and have succeeded in obtaining satisfactory results and limited sparsity tolerance. However, these methods are generally sensitive to incomplete point clouds that are scanned with flaws or large gaps. In this paper, we propose an end-to-end architecture that compensates for and identifies partial point clouds on the fly. First, we propose a cascaded solution that integrates both the upstream masked autoencoder (MAE) and downstream understanding networks simultaneously, allowing the task-oriented downstream to identify the points generated by the completion-oriented upstream. These two streams complement each other, resulting in improved performance for both completion and downstream-dependent tasks. Second, to explicitly understand the predicted points' pattern, we introduce hierarchical self-distillation (HSD), which can be applied to any hierarchy-based point cloud methods. HSD ensures that the deepest classifier with a larger perceptual field of local kernels and longer code length provides additional regularization to intermediate ones rather than simply aggregating the multi-scale features, and therefore maximizing the mutual information (MI) between a teacher and students. The proposed HSD strategy is particularly well-suited for tasks involving scattered point clouds, wherein a singular prediction may yield imprecise outcomes due to the inherently irregular and sparse nature of the geometric shape being reconstructed. We show the advantage of the self-distillation process in the hyperspaces based on the information bottleneck principle. Our method achieves state-of-the-art on both classification and part segmentation tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652–660.
  2. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” in Advances in neural information processing systems, 2017, pp. 5099–5108.
  3. Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” Acm Transactions On Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.
  4. X. Yan, J. Gao, J. Li, R. Zhang, Z. Li, R. Huang, and S. Cui, “Sparse single sweep lidar point cloud segmentation via learning contextual shape priors from scene completion,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp. 3101–3109.
  5. M. Jaritz, J. Gu, and H. Su, “Multi-view pointnet for 3d scene understanding,” in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019, pp. 0–0.
  6. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of naacL-HLT, 2019, pp. 4171–4186.
  7. K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision learners,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16 000–16 009.
  8. Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, and H. Hu, “Simmim: A simple framework for masked image modeling,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9653–9663.
  9. H. Bao, L. Dong, S. Piao, and F. Wei, “BEit: BERT pre-training of image transformers,” in International Conference on Learning Representations, 2022. [Online]. Available: https://openreview.net/forum?id=p-BhZSz59o4
  10. C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised nets,” in Artificial intelligence and statistics.   Pmlr, 2015, pp. 562–570.
  11. T. Xiang, C. Zhang, Y. Song, J. Yu, and W. Cai, “Walk in the cloud: Learning curves for point clouds shape analysis,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 915–924.
  12. X. Ma, C. Qin, H. You, H. Ran, and Y. Fu, “Rethinking network design and local geometry in point cloud: A simple residual MLP framework,” in International Conference on Learning Representations, 2022.
  13. Z. Qing, S. Zhang, Z. Huang, X. Wang, Y. Wang, Y. Lv, C. Gao, and N. Sang, “Mar: Masked autoencoders for efficient action recognition,” IEEE Transactions on Multimedia, 2023.
  14. Y. Pang, W. Wang, F. E. Tay, W. Liu, Y. Tian, and L. Yuan, “Masked autoencoders for point cloud self-supervised learning,” in European Conference on Computer Vision.   Springer, 2022, pp. 604–621.
  15. J. Liu, Y. Wu, M. Gong, Z. Liu, Q. Miao, and W. Ma, “Inter-modal masked autoencoder for self-supervised learning on point clouds,” IEEE Transactions on Multimedia, 2023.
  16. J. Jiang, X. Lu, L. Zhao, R. Dazaley, and M. Wang, “Masked autoencoders in 3d point cloud representation learning,” IEEE Transactions on Multimedia, 2023.
  17. W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “Pcn: Point completion network,” in 2018 International Conference on 3D Vision (3DV).   IEEE, 2018, pp. 728–737.
  18. L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese, “Topnet: Structural point cloud decoder,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 383–392.
  19. X. Wen, T. Li, Z. Han, and Y.-S. Liu, “Point cloud completion by skip-attention network with hierarchical folding,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1939–1948.
  20. X. Wen, P. Xiang, Z. Han, Y.-P. Cao, P. Wan, W. Zheng, and Y.-S. Liu, “Pmp-net: Point cloud completion by learning multi-step point moving paths,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 7443–7452.
  21. P. Xiang, X. Wen, Y.-S. Liu, Y.-P. Cao, P. Wan, W. Zheng, and Z. Han, “Snowflakenet: Point cloud completion by snowflake point deconvolution with skip-transformer,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 5499–5509.
  22. X. Wen, P. Xiang, Z. Han, Y.-P. Cao, P. Wan, W. Zheng, and Y.-S. Liu, “Pmp-net++: Point cloud completion by transformer-enhanced multi-step point moving paths,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 852–867, 2022.
  23. T. Huang, H. Zou, J. Cui, J. Zhang, X. Yang, L. Li, and Y. Liu, “Adaptive recurrent forward network for dense point cloud completion,” IEEE Transactions on Multimedia, 2022.
  24. G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.
  25. C. Blakeney, X. Li, Y. Yan, and Z. Zong, “Parallel blockwise knowledge distillation for deep neural network compression,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 7, pp. 1765–1776, 2020.
  26. Z. Li, J. Ye, M. Song, Y. Huang, and Z. Pan, “Online knowledge distillation for efficient pose estimation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 11 740–11 750.
  27. C. Wang, Q. Yang, R. Huang, S. Song, and G. Huang, “Efficient knowledge distillation from model checkpoints,” in Advances in Neural Information Processing Systems, 2022.
  28. J. H. Cho and B. Hariharan, “On the efficacy of knowledge distillation,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 4794–4802.
  29. T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and A. Anandkumar, “Born again neural networks,” in International Conference on Machine Learning.   PMLR, 2018, pp. 1607–1616.
  30. Y. Chen, Y. Liu, D. Jiang, X. Zhang, W. Dai, H. Xiong, and Q. Tian, “Sdae: Self-distillated masked autoencoder,” in European Conference on Computer Vision.   Springer, 2022, pp. 108–124.
  31. L. Zhang, C. Bao, and K. Ma, “Self-distillation: Towards efficient and compact neural networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 8, pp. 4388–4403, 2021.
  32. Y. Zhang, Y. Qu, Y. Xie, Z. Li, S. Zheng, and C. Li, “Perturbed self-distillation: Weakly supervised large-scale point cloud semantic segmentation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 15 520–15 528.
  33. K. Kim, B. Ji, D. Yoon, and S. Hwang, “Self-knowledge distillation with progressive refinement of targets,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 6567–6576.
  34. Z. Zhang and M. Sabuncu, “Self-distillation as instance-specific label smoothing,” Advances in Neural Information Processing Systems, vol. 33, pp. 2184–2195, 2020.
  35. S. Qiu, S. Anwar, and N. Barnes, “Geometric back-projection network for point cloud classification,” IEEE Transactions on Multimedia, vol. 24, pp. 1943–1955, 2021.
  36. R. Zhang, L. Wang, Y. Wang, P. Gao, H. Li, and J. Shi, “Starting from non-parametric networks for 3d point cloud analysis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5344–5353.
  37. Y. Liu, B. Tian, Y. Lv, L. Li, and F.-Y. Wang, “Point cloud classification using content-based transformer via clustering in feature space,” IEEE/CAA Journal of Automatica Sinica, 2023.
  38. N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” arXiv preprint physics/0004057, 2000.
  39. R. Li, X. Wang, G. Huang, W. Yang, K. Zhang, X. Gu, S. N. Tran, S. Garg, J. Alty, and Q. Bai, “A comprehensive review on deep supervision: Theories and applications,” arXiv preprint arXiv:2207.02376, 2022.
  40. J. Xu, X. Li, Y. Tang, Q. Yu, Y. Hao, L. Hu, and M. Chen, “Casfusionnet: A cascaded network for point cloud semantic scene completion by dense feature fusion,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 3, 2023, pp. 3018–3026.
  41. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep representation for volumetric shapes,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1912–1920.
  42. M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung, “Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 1588–1597.
  43. L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang, A. Sheffer, and L. Guibas, “A scalable active framework for region annotation in 3d shape collections,” ACM Transactions on Graphics (ToG), vol. 35, no. 6, pp. 1–12, 2016.
  44. M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu, “Pct: Point cloud transformer,” Computational Visual Media, vol. 7, no. 2, pp. 187–199, 2021.
  45. S. Lee and J. Jo, “Information flows of diverse autoencoders,” Entropy, vol. 23, no. 7, p. 862, 2021.
  46. B. C. Geiger, “On information plane analyses of neural network classifiers–a review,” IEEE Transactions on Neural Networks and Learning Systems, 2021.
  47. Z. Goldfeld, E. v. d. Berg, K. Greenewald, I. Melnyk, N. Nguyen, B. Kingsbury, and Y. Polyanskiy, “Estimating information flow in deep neural networks,” arXiv preprint arXiv:1810.05728, 2018.
  48. G. Qian, Y. Li, H. Peng, J. Mai, H. Hammoud, M. Elhoseiny, and B. Ghanem, “Pointnext: Revisiting pointnet++ with improved training and scaling strategies,” Advances in Neural Information Processing Systems, vol. 35, pp. 23 192–23 204, 2022.

Summary

We haven't generated a summary for this paper yet.