Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Error bounds, PL condition, and quadratic growth for weakly convex functions, and linear convergences of proximal point methods (2312.16775v2)

Published 28 Dec 2023 in math.OC, cs.SY, and eess.SY

Abstract: Many practical optimization problems lack strong convexity. Fortunately, recent studies have revealed that first-order algorithms also enjoy linear convergences under various weaker regularity conditions. While the relationship among different conditions for convex and smooth functions is well-understood, it is not the case for the nonsmooth setting. In this paper, we go beyond convexity and smoothness, and clarify the connections among common regularity conditions in the class of weakly convex functions, including $\textit{strong convexity}$, $\textit{restricted secant inequality}$, $\textit{subdifferential error bound}$, $\textit{Polyak-{\L}ojasiewicz inequality}$, and $\textit{quadratic growth}$. In addition, using these regularity conditions, we present a simple and modular proof for the linear convergence of the proximal point method (PPM) for convex and weakly convex optimization problems. The linear convergence also holds when the subproblems of PPM are solved inexactly with a proper control of inexactness.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube