Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Relationship between auditory and semantic entrainment using Deep Neural Networks (DNN) (2312.16599v1)

Published 27 Dec 2023 in cs.CL, cs.SD, and eess.AS

Abstract: The tendency of people to engage in similar, matching, or synchronized behaviour when interacting is known as entrainment. Many studies examined linguistic (syntactic and lexical structures) and paralinguistic (pitch, intensity) entrainment, but less attention was given to finding the relationship between them. In this study, we utilized state-of-the-art DNN embeddings such as BERT and TRIpLet Loss network (TRILL) vectors to extract features for measuring semantic and auditory similarities of turns within dialogues in two comparable spoken corpora of two different languages. We found people's tendency to entrain on semantic features more when compared to auditory features. Additionally, we found that entrainment in semantic and auditory linguistic features are positively correlated. The findings of this study might assist in implementing the mechanism of entrainment in human-machine interaction (HMI).

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.