Papers
Topics
Authors
Recent
Search
2000 character limit reached

Relationship between auditory and semantic entrainment using Deep Neural Networks (DNN)

Published 27 Dec 2023 in cs.CL, cs.SD, and eess.AS | (2312.16599v1)

Abstract: The tendency of people to engage in similar, matching, or synchronized behaviour when interacting is known as entrainment. Many studies examined linguistic (syntactic and lexical structures) and paralinguistic (pitch, intensity) entrainment, but less attention was given to finding the relationship between them. In this study, we utilized state-of-the-art DNN embeddings such as BERT and TRIpLet Loss network (TRILL) vectors to extract features for measuring semantic and auditory similarities of turns within dialogues in two comparable spoken corpora of two different languages. We found people's tendency to entrain on semantic features more when compared to auditory features. Additionally, we found that entrainment in semantic and auditory linguistic features are positively correlated. The findings of this study might assist in implementing the mechanism of entrainment in human-machine interaction (HMI).

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.