Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

AHAM: Adapt, Help, Ask, Model -- Harvesting LLMs for literature mining (2312.15784v1)

Published 25 Dec 2023 in cs.CL and cs.AI

Abstract: In an era marked by a rapid increase in scientific publications, researchers grapple with the challenge of keeping pace with field-specific advances. We present the `AHAM' methodology and a metric that guides the domain-specific \textbf{adapt}ation of the BERTopic topic modeling framework to improve scientific text analysis. By utilizing the LLaMa2 generative LLM, we generate topic definitions via one-shot learning by crafting prompts with the \textbf{help} of domain experts to guide the LLM for literature mining by \textbf{asking} it to model the topic names. For inter-topic similarity evaluation, we leverage metrics from language generation and translation processes to assess lexical and semantic similarity of the generated topics. Our system aims to reduce both the ratio of outlier topics to the total number of topics and the similarity between topic definitions. The methodology has been assessed on a newly gathered corpus of scientific papers on literature-based discovery. Through rigorous evaluation by domain experts, AHAM has been validated as effective in uncovering intriguing and novel insights within broad research areas. We explore the impact of domain adaptation of sentence-transformers for the task of topic \textbf{model}ing using two datasets, each specialized to specific scientific domains within arXiv and medarxiv. We evaluate the impact of data size, the niche of adaptation, and the importance of domain adaptation. Our results suggest a strong interaction between domain adaptation and topic modeling precision in terms of outliers and topic definitions.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.