Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Self-Admitted Technical Debt Detection Approaches: A Decade Systematic Review (2312.15020v3)

Published 19 Dec 2023 in cs.SE and cs.AI

Abstract: Technical debt (TD) represents the long-term costs associated with suboptimal design or code decisions in software development, often made to meet short-term delivery goals. Self-Admitted Technical Debt (SATD) occurs when developers explicitly acknowledge these trade-offs in the codebase, typically through comments or annotations. Automated detection of SATD has become an increasingly important research area, particularly with the rise of NLP, ML, and deep learning (DL) techniques that aim to streamline SATD detection. This systematic literature review provides a comprehensive analysis of SATD detection approaches published between 2014 and 2024, focusing on the evolution of techniques from NLP-based models to more advanced ML, DL, and Transformers-based models such as BERT. The review identifies key trends in SATD detection methodologies and tools, evaluates the effectiveness of different approaches using metrics like precision, recall, and F1-score, and highlights the primary challenges in this domain, including dataset heterogeneity, model generalizability, and the explainability of models. The findings suggest that while early NLP methods laid the foundation for SATD detection, more recent advancements in DL and Transformers models have significantly improved detection accuracy. However, challenges remain in scaling these models for broader industrial use. This SLR offers insights into current research gaps and provides directions for future work, aiming to improve the robustness and practicality of SATD detection tools.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. doi:10.1016/j.infsof.2018.05.010.
  2. doi:10.4230/DagRep.6.4.110.
  3. doi:10.1145/157709.157715.
  4. doi:10.1145/1882362.1882373.
  5. doi:10.1016/j.jss.2012.12.052.
  6. doi:10.1016/j.jss.2014.12.027.
  7. doi:10.1016/j.infsof.2015.10.008.
  8. doi:10.1145/2884781.2884822.
  9. doi:10.1109/MS.2012.167.
  10. doi:10.1109/MTD.2014.9.
  11. doi:10.1016/j.jss.2019.02.056. URL https://doi.org/10.1016/j.jss.2019.02.056
  12. doi:10.1145/2460999.2461005.
  13. E. D. Liddy, Natural language processing (2001).
  14. doi:10.1002/ARIS.1440370103.
  15. doi:10.1201/9780824746346.
  16. doi:10.1007/978-81-322-3972-7{_}19.
  17. doi:10.14257/ijseia.2015.9.11.12.
  18. doi:10.1145/2889160.2891053.
  19. doi:10.48550/arXiv.2202.02387.
  20. doi:10.1145/1368088.1368123.
  21. doi:10.1007/BF03194494.
  22. doi:10.1109/MSR.2010.5463344.
  23. doi:10.1109/MSR.2013.6623997.
  24. doi:10.14236/ewic/EASE2008.8.
  25. doi:10.1007/11767718{_}3.
  26. doi:10.1145/2601248.2601268.
  27. doi:10.1109/TSE.2014.2327027.
  28. doi:10.1145/3524843.3528097.
  29. doi:10.1145/3524843.3528098.
  30. doi:10.1109/TSE.2020.3001339.
  31. doi:10.1016/j.jss.2021.110936.
  32. doi:10.1097/01.NAJ.0000446779.99522.f6.
  33. doi:10.1007/978-3-319-18305-3{_}1.
  34. doi:10.1007/BF00116892.
  35. doi:10.1038/nature14539.
  36. doi:10.1109/SANER53432.2022.00094.
  37. doi:10.1007/s10515-022-00358-6.
  38. doi:10.1109/TSE.2020.3031401.
  39. doi:10.1007/s10664-022-10121-w.
  40. doi:10.1109/ICSME.2014.31.
  41. doi:10.1109/SANER.2016.72.
  42. doi:10.1016/j.infsof.2020.106270.
  43. doi:10.1145/3447247.
  44. doi:10.1016/j.infsof.2022.106855.
  45. doi:10.1109/SEAA51224.2020.00083.
  46. doi:10.1109/MTD.2015.7332621.
  47. doi:10.1049/icp.2021.0881.
  48. doi:10.1109/ICSME.2017.8.
  49. doi:10.1109/TSE.2017.2654244.
  50. doi:10.1145/3183440.3183478.
  51. doi:10.1109/ACCESS.2019.2933318.
  52. doi:10.1109/IWESEP.2018.00010.
  53. doi:10.1109/APSEC48747.2019.00050.
  54. doi:10.1145/3379597.3387459.
  55. doi:10.1109/SEAA51224.2020.00069.
  56. doi:10.1007/s10664-020-09854-3.
  57. doi:10.1007/s11219-020-09520-3.
  58. doi:10.1109/SCAM51674.2020.00011.
  59. doi:10.1109/MSR52588.2021.00048.
  60. doi:10.1007/s10664-020-09917-5.
  61. doi:10.1109/TR.2021.3087864.
  62. doi:10.1007/s10664-022-10128-3.
  63. doi:10.1109/TSE.2021.3115772.
  64. doi:10.1016/j.scico.2021.102693.
  65. doi:10.11591/ijece.v13i2.pp2142-2155.
  66. doi:10.1145/3324916.
  67. doi:10.1007/978-3-030-43020-7{_}93.
  68. doi:10.1109/SANER48275.2020.9054868.
  69. doi:10.1145/3324884.3416583.
  70. doi:10.5220/0009796001570165.
  71. doi:10.1007/s11704-020-9281-z.
  72. doi:10.1007/978-3-030-75418-1{_}25.
  73. doi:10.1088/1742-6596/1955/1/012102.
  74. doi:10.1016/j.jss.2022.111219.
  75. doi:10.1145/3524843.3528093.
  76. doi:10.1007/s10515-022-00364-8.
  77. doi:10.1002/spe.3117.
  78. doi:10.53106/160792642022052303021.
  79. doi:10.3233/JIFS-211273.
  80. doi:10.1016/j.jss.2022.111514.
  81. doi:10.1007/s10664-017-9522-4.
  82. doi:10.1016/j.eng.2022.04.024.
  83. doi:10.1145/1764810.1764814.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube