Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 223 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Emage: Non-Autoregressive Text-to-Image Generation (2312.14988v1)

Published 22 Dec 2023 in cs.CV

Abstract: Autoregressive and diffusion models drive the recent breakthroughs on text-to-image generation. Despite their huge success of generating high-realistic images, a common shortcoming of these models is their high inference latency - autoregressive models run more than a thousand times successively to produce image tokens and diffusion models convert Gaussian noise into images with many hundreds of denoising steps. In this work, we explore non-autoregressive text-to-image models that efficiently generate hundreds of image tokens in parallel. We develop many model variations with different learning and inference strategies, initialized text encoders, etc. Compared with autoregressive baselines that needs to run one thousand times, our model only runs 16 times to generate images of competitive quality with an order of magnitude lower inference latency. Our non-autoregressive model with 346M parameters generates an image of 256$\times$256 with about one second on one V100 GPU.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.