Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

TPTNet: A Data-Driven Temperature Prediction Model Based on Turbulent Potential Temperature (2312.14980v1)

Published 22 Dec 2023 in cs.LG, physics.ao-ph, and physics.flu-dyn

Abstract: A data-driven model for predicting the surface temperature using neural networks was proposed to alleviate the computational burden of numerical weather prediction (NWP). Our model, named TPTNet uses only 2m temperature measured at the weather stations of the South Korean Peninsula as input to predict the local temperature at finite forecast hours. The turbulent fluctuation component of the temperature was extracted from the station measurements by separating the climatology component accounting for the yearly and daily variations. The effect of station altitude was then compensated by introducing a potential temperature. The resulting turbulent potential temperature data at irregularly distributed stations were used as input for predicting the turbulent potential temperature at forecast hours through three trained networks based on convolutional neural network (CNN), Swin Transformer, and a graphic neural network (GNN). The prediction performance of our network was compared with that of persistence and NWP, confirming that our model outperformed NWP for up to 12 forecast hours.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)