Session-Based Recommendation by Exploiting Substitutable and Complementary Relationships from Multi-behavior Data (2312.14957v2)
Abstract: Session-based recommendation (SR) aims to dynamically recommend items to a user based on a sequence of the most recent user-item interactions. Most existing studies on SR adopt advanced deep learning methods. However, the majority only consider a special behavior type (e.g., click), while those few considering multi-typed behaviors ignore to take full advantage of the relationships between products (items). In this case, the paper proposes a novel approach, called Substitutable and Complementary Relationships from Multi-behavior Data (denoted as SCRM) to better explore the relationships between products for effective recommendation. Specifically, we firstly construct substitutable and complementary graphs based on a user's sequential behaviors in every session by jointly considering click' and
purchase' behaviors. We then design a denoising network to remove false relationships, and further consider constraints on the two relationships via a particularly designed loss function. Extensive experiments on two e-commerce datasets demonstrate the superiority of our model over state-of-the-art methods, and the effectiveness of every component in SCRM.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.