Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 30 tok/s
Gemini 3.0 Pro 42 tok/s
Gemini 2.5 Flash 130 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AS-XAI: Self-supervised Automatic Semantic Interpretation for CNN (2312.14935v1)

Published 2 Dec 2023 in cs.CV, cs.AI, cs.HC, cs.IR, and cs.LG

Abstract: Explainable artificial intelligence (XAI) aims to develop transparent explanatory approaches for "black-box" deep learning models. However,it remains difficult for existing methods to achieve the trade-off of the three key criteria in interpretability, namely, reliability, causality, and usability, which hinder their practical applications. In this paper, we propose a self-supervised automatic semantic interpretable explainable artificial intelligence (AS-XAI) framework, which utilizes transparent orthogonal embedding semantic extraction spaces and row-centered principal component analysis (PCA) for global semantic interpretation of model decisions in the absence of human interference, without additional computational costs. In addition, the invariance of filter feature high-rank decomposition is used to evaluate model sensitivity to different semantic concepts. Extensive experiments demonstrate that robust and orthogonal semantic spaces can be automatically extracted by AS-XAI, providing more effective global interpretability for convolutional neural networks (CNNs) and generating human-comprehensible explanations. The proposed approach offers broad fine-grained extensible practical applications, including shared semantic interpretation under out-of-distribution (OOD) categories, auxiliary explanations for species that are challenging to distinguish, and classification explanations from various perspectives.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.