Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SutraNets: Sub-series Autoregressive Networks for Long-Sequence, Probabilistic Forecasting (2312.14880v1)

Published 22 Dec 2023 in cs.LG and cs.AI

Abstract: We propose SutraNets, a novel method for neural probabilistic forecasting of long-sequence time series. SutraNets use an autoregressive generative model to factorize the likelihood of long sequences into products of conditional probabilities. When generating long sequences, most autoregressive approaches suffer from harmful error accumulation, as well as challenges in modeling long-distance dependencies. SutraNets treat long, univariate prediction as multivariate prediction over lower-frequency sub-series. Autoregression proceeds across time and across sub-series in order to ensure coherent multivariate (and, hence, high-frequency univariate) outputs. Since sub-series can be generated using fewer steps, SutraNets effectively reduce error accumulation and signal path distances. We find SutraNets to significantly improve forecasting accuracy over competitive alternatives on six real-world datasets, including when we vary the number of sub-series and scale up the depth and width of the underlying sequence models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.