Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enhancing Neural Theorem Proving through Data Augmentation and Dynamic Sampling Method (2312.14188v2)

Published 20 Dec 2023 in cs.AI, cs.LG, and cs.LO

Abstract: Theorem proving is a fundamental task in mathematics. With the advent of LLMs and interactive theorem provers (ITPs) like Lean, there has been growing interest in integrating LLMs and ITPs to automate theorem proving. In this approach, the LLM generates proof steps (tactics), and the ITP checks the applicability of the tactics at the current goal. The two systems work together to complete the proof. In this paper, we introduce DS-Prover, a novel dynamic sampling method for theorem proving. This method dynamically determines the number of tactics to apply to expand the current goal, taking into account the remaining time compared to the total allocated time for proving a theorem. This makes the proof search process more efficient by adjusting the balance between exploration and exploitation as time passes. We also augment the training dataset by decomposing simplification and rewrite tactics with multiple premises into tactics with single premises. This gives the model more examples to learn from and helps it to predict the tactics with premises more accurately. We perform our experiments using the Mathlib dataset of the Lean theorem prover and report the performance on two standard datasets, MiniF2F and ProofNet. Our methods achieve significant performance gains on both datasets. We achieved a state-of-the-art performance (Pass@1) of 14.2% on the ProofNet dataset and a performance of 29.8% on MiniF2F, slightly surpassing the best-reported Pass@1 of 29.6% using Lean.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.