Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Large Language Models in Medical Term Classification and Unexpected Misalignment Between Response and Reasoning (2312.14184v1)

Published 19 Dec 2023 in cs.CL, cs.AI, and cs.LG

Abstract: This study assesses the ability of state-of-the-art LLMs including GPT-3.5, GPT-4, Falcon, and LLaMA 2 to identify patients with mild cognitive impairment (MCI) from discharge summaries and examines instances where the models' responses were misaligned with their reasoning. Utilizing the MIMIC-IV v2.2 database, we focused on a cohort aged 65 and older, verifying MCI diagnoses against ICD codes and expert evaluations. The data was partitioned into training, validation, and testing sets in a 7:2:1 ratio for model fine-tuning and evaluation, with an additional metastatic cancer dataset from MIMIC III used to further assess reasoning consistency. GPT-4 demonstrated superior interpretative capabilities, particularly in response to complex prompts, yet displayed notable response-reasoning inconsistencies. In contrast, open-source models like Falcon and LLaMA 2 achieved high accuracy but lacked explanatory reasoning, underscoring the necessity for further research to optimize both performance and interpretability. The study emphasizes the significance of prompt engineering and the need for further exploration into the unexpected reasoning-response misalignment observed in GPT-4. The results underscore the promise of incorporating LLMs into healthcare diagnostics, contingent upon methodological advancements to ensure accuracy and clinical coherence of AI-generated outputs, thereby improving the trustworthiness of LLMs for medical decision-making.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.