Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Diversifying Knowledge Enhancement of Biomedical Language Models using Adapter Modules and Knowledge Graphs (2312.13881v1)

Published 21 Dec 2023 in cs.CL

Abstract: Recent advances in NLP owe their success to pre-training LLMs on large amounts of unstructured data. Still, there is an increasing effort to combine the unstructured nature of LMs with structured knowledge and reasoning. Particularly in the rapidly evolving field of biomedical NLP, knowledge-enhanced LLMs (KELMs) have emerged as promising tools to bridge the gap between LLMs and domain-specific knowledge, considering the available biomedical knowledge graphs (KGs) curated by experts over the decades. In this paper, we develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained LLMs (PLMs). We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical ontology OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT. The approach includes partitioning knowledge graphs into smaller subgraphs, fine-tuning adapter modules for each subgraph, and combining the knowledge in a fusion layer. We test the performance on three downstream tasks: document classification,question answering, and natural language inference. We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low. Finally, we provide a detailed interpretation of the results and report valuable insights for future work.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.