Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DECO: Unleashing the Potential of ConvNets for Query-based Detection and Segmentation (2312.13735v2)

Published 21 Dec 2023 in cs.CV

Abstract: Transformer and its variants have shown great potential for various vision tasks in recent years, including image classification, object detection and segmentation. Meanwhile, recent studies also reveal that with proper architecture design, convolutional networks (ConvNets) also achieve competitive performance with transformers. However, no prior methods have explored to utilize pure convolution to build a Transformer-style Decoder module, which is essential for Encoder-Decoder architecture like Detection Transformer (DETR). To this end, in this paper we explore whether we could build query-based detection and segmentation framework with ConvNets instead of sophisticated transformer architecture. We propose a novel mechanism dubbed InterConv to perform interaction between object queries and image features via convolutional layers. Equipped with the proposed InterConv, we build Detection ConvNet (DECO), which is composed of a backbone and convolutional encoder-decoder architecture. We compare the proposed DECO against prior detectors on the challenging COCO benchmark. Despite its simplicity, our DECO achieves competitive performance in terms of detection accuracy and running speed. Specifically, with the ResNet-18 and ResNet-50 backbone, our DECO achieves $40.5\%$ and $47.8\%$ AP with $66$ and $34$ FPS, respectively. The proposed method is also evaluated on the segment anything task, demonstrating similar performance and higher efficiency. We hope the proposed method brings another perspective for designing architectures for vision tasks. Codes are available at https://github.com/xinghaochen/DECO and https://github.com/mindspore-lab/models/tree/master/research/huawei-noah/DECO.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.