Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DENIS-SDN: Software-Defined Network Slicing Solution for Dense and Ultra-Dense IoT Networks (2312.13662v1)

Published 21 Dec 2023 in cs.NI

Abstract: Traditional Wireless Sensor Networks protocols used in Internet of Things Networks (IoTNs) today face challenges in high- and ultra-density network topology conditions. New networking paradigms like Software-Defined Networks (SDN) have emerged as an up-and-coming approach to address IoT application requirements through implementing global protocol strategies and network programmability. This paper proposes a divide-and-conquer solution that aims to improve the PDR in ultra-dense IoT (UDIoT) network environments using network slicing. As such, we develop and evaluate DENIS-SDN, an open-source SDN solution for UDIoT Network environments consisting of a modular SDN controller and an OpenFlow-like data-plane protocol. DENIS-SDN utilizes our Network Density Control mechanism based on operational specification requirements, which address the challenges UDIoT network deployments pose, including interference, congestion, resource management, control, and quality of service (QoS) performance issues. To achieve this, it divides dense IoT networks into either logically sliced sub-networks separating nodes using routing rules or physically sliced sub-networks separating nodes into different radio channels. We provide evaluation results over realistic scenarios demonstrating improved PDR performance up to 4.8% for logically and up to 11.6% for physically sliced network scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. W. Yu, H. Xu, H. Zhang, D. Griffith, and N. Golmie, “Ultra-dense networks: Survey of state of the art and future directions,” in 25th Int. Conf. on Comput. Commun. and Netw.   IEEE, 2016, pp. 1–10.
  2. M. Kamel, W. Hamouda, and A. Youssef, “Ultra-dense networks: A survey,” IEEE Commun. Surv. & Tutor., vol. 18, no. 4, pp. 2522–2545, 2016.
  3. Y. Teng, M. Liu, F. R. Yu, V. C. Leung, M. Song, and Y. Zhang, “Resource allocation for ultra-dense networks: A survey, some research issues and challenges,” IEEE Commun. Surv. & Tutor., vol. 21, no. 3, pp. 2134–2168, 2018.
  4. K. Sood, S. Yu, and Y. Xiang, “Software-Defined Wireless Networks opportunities and challenges for Internet-of-Things: A review,” IEEE Internet of Things J., vol. 3, no. 4, pp. 453–463, Aug. 2016.
  5. S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking for internet of things: A survey,” IEEE Internet of Things J., vol. 4, no. 6, pp. 1994–2008, 2017.
  6. D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proc. of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.
  7. T. Theodorou and L. Mamatas, “CORAL-SDN: A Software-Defined Networking solution for the Internet of Things,” in IEEE Conf. on Netw. Function Virtualization and Softw. Defined Netw., Nov. 2017, pp. 1–2.
  8. T. Theodorou and L. Mamatas, “Software defined topology control strategies for the Internet of Things,” in IEEE Conf. on Netw. Function Virtualization and Softw. Defined Netw., Nov. 2017, pp. 236–241.
  9. T. Theodorou and L. Mamatas, “A Versatile Out-of-Band Software-Defined networking solution for the Internet of Things,” IEEE Access, vol. 8, pp. 103 710–103 733, Jun. 2020.
  10. T. Theodorou and L. Mamatas, “SD-MIoT: A Software-Defined Networking Solution for Mobile Internet of Things,” IEEE Internet of Things J., vol. 8, no. 6, pp. 4604–4617, 2021.
  11. “DENIS-SDN open-source software and documentation,” [Accessed: Jun. 10, 2023]. [Online]. Available: https://github.com/SWNRG/DENIS-SDN
  12. A. M. Ortiz, F. Royo, T. Olivares, J. C. Castillo, L. Orozco-Barbosa, and P. J. Marron, “Fuzzy-logic based routing for dense wireless sensor networks,” Telecommun. Syst., vol. 52, pp. 2687–2697, 2013.
  13. J.-Y. Kim, T. Sharma, B. Kumar, G. Tomar, K. Berry, and W.-H. Lee, “Intercluster ant colony optimization algorithm for wireless sensor network in dense environment,” Int. J. Distrib. Sens. Netw., vol. 10, no. 4, p. 457402, 2014.
  14. S. B. Prabhu, S. Sophia, P. Manivannan, and S. Nithya, “A research on decentralized clustering algorithms for dense wireless sensor networks,” Int. J. Comput. Appl., vol. 57, no. 20, 2012.
  15. S. K. Sharma and X. Wang, “Distributed Caching Enabled Peak Traffic Reduction in Ultra-Dense IoT Networks,” IEEE Commun. Lett., vol. 22, no. 6, pp. 1252–1255, 2018.
  16. H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge computation offloading for ultradense IoT networks,” IEEE Internet of Things J., vol. 5, no. 6, pp. 4977–4988, 2018.
  17. H. Guo, J. Zhang, J. Liu, and H. Zhang, “Energy-aware computation offloading and transmit power allocation in ultradense IoT networks,” IEEE Internet of Things J., vol. 6, no. 3, pp. 4317–4329, 2019.
  18. S. Nadif, E. Sabir, H. Elbiaze, and A. Haqiq, “Traffic-Aware Mean-Field Power Allocation for Ultradense NB-IoT Networks,” IEEE Internet of Things J., vol. 9, no. 21, pp. 21 811–21 824, 2022.
  19. B. Zhou and W. Saad, “Performance analysis of age of information in ultra-dense Internet of Things (IoT) systems with noisy channels,” IEEE Trans. on Wirel. Commun., vol. 21, no. 5, pp. 3493–3507, 2021.
  20. C. Moy, L. Besson, G. Delbarre, and L. Toutain, “Decentralized spectrum learning for radio collision mitigation in ultra-dense IoT networks: LoRaWAN case study and experiments,” Ann. of Telecommun., vol. 75, pp. 711–727, 2020.
  21. M. Emu and S. Choudhury, “DSO: An intelligent SFC orchestrator for time and resource intensive ultra dense IoT networks,” in IEEE Int. Conf. on Commun.   IEEE, 2021, pp. 1–6.
  22. Open Networking Foundation, “SDN architecture 1.1,” Open Netw. Found., Palo Alto, CA, USA, Tech. Rep. ONF TR-521, Feb. 2016. [Online]. Available: https://www.opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
  23. M. Gigli and S. G. Koo, “Internet of Things: Services and applications categorization,” Adv. Internet of Things, vol. 1, no. 2, pp. 27–31, 2011.
  24. “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, 2016.
  25. A. Dunkels, B. Gronvall, and T. Voigt, “Contiki – a lightweight and flexible operating system for tiny networked sensors,” in 29th Ann. IEEE Int. Conf. on Local Comput. Netw.   IEEE, 2004, pp. 455–462.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube