Papers
Topics
Authors
Recent
2000 character limit reached

On the Hardness of Analyzing Quantum Programs Quantitatively (2312.13657v1)

Published 21 Dec 2023 in cs.LO

Abstract: In this paper, we study quantitative properties of quantum programs. Properties of interest include (positive) almost-sure termination, expected runtime or expected cost, that is, for example, the expected number of applications of a given quantum gate, etc. After studying the completeness of these problems in the arithmetical hierarchy over the Clifford+T fragment of quantum mechanics, we express these problems using a variation of a quantum pre-expectation transformer, a weakest precondition based technique that allows to symbolically compute these quantitative properties. Under a smooth restriction-a restriction to polynomials of bounded degree over a real closed field-we show that the quantitative problem, which consists in finding an upper-bound to the pre-expectation, can be decided in time double-exponential in the size of a program, thus providing, despite its great complexity, one of the first decidable results on the analysis and verification of quantum programs. Finally, we sketch how the latter can be transformed into an efficient synthesis method.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.