Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

HW-V2W-Map: Hardware Vulnerability to Weakness Mapping Framework for Root Cause Analysis with GPT-assisted Mitigation Suggestion (2312.13530v1)

Published 21 Dec 2023 in cs.CR, cs.AI, and cs.LG

Abstract: The escalating complexity of modern computing frameworks has resulted in a surge in the cybersecurity vulnerabilities reported to the National Vulnerability Database (NVD) by practitioners. Despite the fact that the stature of NVD is one of the most significant databases for the latest insights into vulnerabilities, extracting meaningful trends from such a large amount of unstructured data is still challenging without the application of suitable technological methodologies. Previous efforts have mostly concentrated on software vulnerabilities; however, a holistic strategy incorporates approaches for mitigating vulnerabilities, score prediction, and a knowledge-generating system that may extract relevant insights from the Common Weakness Enumeration (CWE) and Common Vulnerability Exchange (CVE) databases is notably absent. As the number of hardware attacks on Internet of Things (IoT) devices continues to rapidly increase, we present the Hardware Vulnerability to Weakness Mapping (HW-V2W-Map) Framework, which is a Machine Learning (ML) framework focusing on hardware vulnerabilities and IoT security. The architecture that we have proposed incorporates an Ontology-driven Storytelling framework, which automates the process of updating the ontology in order to recognize patterns and evolution of vulnerabilities over time and provides approaches for mitigating the vulnerabilities. The repercussions of vulnerabilities can be mitigated as a result of this, and conversely, future exposures can be predicted and prevented. Furthermore, our proposed framework utilized Generative Pre-trained Transformer (GPT) LLMs to provide mitigation suggestions.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.