Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Programmable electrical coupling between stochastic magnetic tunnel junctions (2312.13171v1)

Published 20 Dec 2023 in cs.ET

Abstract: Superparamagnetic tunnel junctions (SMTJs) are promising sources of randomness for compact and energy efficient implementations of probabilistic computing techniques. Augmenting an SMTJ with electronic circuits, to convert the random telegraph fluctuations of its resistance state to stochastic digital signals, gives a basic building block known as a probabilistic bit or $p$-bit. Though scalable probabilistic computing methods connecting $p$-bits have been proposed, practical implementations are limited by either minimal tunability or energy inefficient microprocessors-in-the-loop. In this work, we experimentally demonstrate the functionality of a scalable analog unit cell, namely a pair of $p$-bits with programmable electrical coupling. This tunable coupling is implemented with operational amplifier circuits that have a time constant of approximately 1us, which is faster than the mean dwell times of the SMTJs over most of the operating range. Programmability enables flexibility, allowing both positive and negative couplings, as well as coupling devices with widely varying device properties. These tunable coupling circuits can achieve the whole range of correlations from $-1$ to $1$, for both devices with similar timescales, and devices whose time scales vary by an order of magnitude. This range of correlation allows such circuits to be used for scalable implementations of simulated annealing with probabilistic computing.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.