Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distribution-Dependent Rates for Multi-Distribution Learning (2312.13130v1)

Published 20 Dec 2023 in stat.ML and cs.LG

Abstract: To address the needs of modeling uncertainty in sensitive machine learning applications, the setup of distributionally robust optimization (DRO) seeks good performance uniformly across a variety of tasks. The recent multi-distribution learning (MDL) framework tackles this objective in a dynamic interaction with the environment, where the learner has sampling access to each target distribution. Drawing inspiration from the field of pure-exploration multi-armed bandits, we provide distribution-dependent guarantees in the MDL regime, that scale with suboptimality gaps and result in superior dependence on the sample size when compared to the existing distribution-independent analyses. We investigate two non-adaptive strategies, uniform and non-uniform exploration, and present non-asymptotic regret bounds using novel tools from empirical process theory. Furthermore, we devise an adaptive optimistic algorithm, LCB-DR, that showcases enhanced dependence on the gaps, mirroring the contrast between uniform and optimistic allocation in the multi-armed bandit literature.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rafael Hanashiro (3 papers)
  2. Patrick Jaillet (100 papers)

Summary

We haven't generated a summary for this paper yet.