Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exploring Multimodal Large Language Models for Radiology Report Error-checking (2312.13103v2)

Published 20 Dec 2023 in cs.CL and cs.CV

Abstract: This paper proposes one of the first clinical applications of multimodal LLMs as an assistant for radiologists to check errors in their reports. We created an evaluation dataset from real-world radiology datasets (including X-rays and CT scans). A subset of original reports was modified to contain synthetic errors by introducing three types of mistakes: "insert", "remove", and "substitute". The evaluation contained two difficulty levels: SIMPLE for binary error-checking and COMPLEX for identifying error types. At the SIMPLE level, our fine-tuned model significantly enhanced performance by 47.4% and 25.4% on MIMIC-CXR and IU X-ray data, respectively. This performance boost is also observed in unseen modality, CT scans, as the model performed 19.46% better than the baseline model. The model also surpassed the domain expert's accuracy in the MIMIC-CXR dataset by 1.67%. Notably, among the subsets (N=21) of the test set where a clinician did not achieve the correct conclusion, the LLaVA ensemble mode correctly identified 71.4% of these cases. However, all models performed poorly in identifying mistake types, underscoring the difficulty of the COMPLEX level. This study marks a promising step toward utilizing multimodal LLMs to enhance diagnostic accuracy in radiology. The ensemble model demonstrated comparable performance to clinicians, even capturing errors overlooked by humans.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.