Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

No More Shortcuts: Realizing the Potential of Temporal Self-Supervision (2312.13008v1)

Published 20 Dec 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Self-supervised approaches for video have shown impressive results in video understanding tasks. However, unlike early works that leverage temporal self-supervision, current state-of-the-art methods primarily rely on tasks from the image domain (e.g., contrastive learning) that do not explicitly promote the learning of temporal features. We identify two factors that limit existing temporal self-supervision: 1) tasks are too simple, resulting in saturated training performance, and 2) we uncover shortcuts based on local appearance statistics that hinder the learning of high-level features. To address these issues, we propose 1) a more challenging reformulation of temporal self-supervision as frame-level (rather than clip-level) recognition tasks and 2) an effective augmentation strategy to mitigate shortcuts. Our model extends a representation of single video frames, pre-trained through contrastive learning, with a transformer that we train through temporal self-supervision. We demonstrate experimentally that our more challenging frame-level task formulations and the removal of shortcuts drastically improve the quality of features learned through temporal self-supervision. The generalization capability of our self-supervised video method is evidenced by its state-of-the-art performance in a wide range of high-level semantic tasks, including video retrieval, action classification, and video attribute recognition (such as object and scene identification), as well as low-level temporal correspondence tasks like video object segmentation and pose tracking. Additionally, we show that the video representations learned through our method exhibit increased robustness to the input perturbations.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com