Papers
Topics
Authors
Recent
2000 character limit reached

Segment Anything Model Meets Image Harmonization (2312.12729v1)

Published 20 Dec 2023 in cs.CV

Abstract: Image harmonization is a crucial technique in image composition that aims to seamlessly match the background by adjusting the foreground of composite images. Current methods adopt either global-level or pixel-level feature matching. Global-level feature matching ignores the proximity prior, treating foreground and background as separate entities. On the other hand, pixel-level feature matching loses contextual information. Therefore, it is necessary to use the information from semantic maps that describe different objects to guide harmonization. In this paper, we propose Semantic-guided Region-aware Instance Normalization (SRIN) that can utilize the semantic segmentation maps output by a pre-trained Segment Anything Model (SAM) to guide the visual consistency learning of foreground and background features. Abundant experiments demonstrate the superiority of our method for image harmonization over state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.