Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Rotational Augmented Noise2Inverse for Low-dose Computed Tomography Reconstruction (2312.12644v1)

Published 19 Dec 2023 in eess.IV, cs.CV, and physics.med-ph

Abstract: In this work, we present a novel self-supervised method for Low Dose Computed Tomography (LDCT) reconstruction. Reducing the radiation dose to patients during a CT scan is a crucial challenge since the quality of the reconstruction highly degrades because of low photons or limited measurements. Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth which can be obtained only by performing additional high-radiation CT scans. Therefore, we propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN). Based on the Noise2Inverse (N2I) method, we enforce in the training loss the equivariant property of rotation transformation, which is induced by the CT imaging system, to improve the quality of the CT image in a lower dose. Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles. Finally, the quantitative results demonstrate that RAN2I achieves higher image quality compared to N2I, and experimental results of RAN2I on real projection data show comparable performance to supervised learning.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: