Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook (2312.12477v3)

Published 19 Dec 2023 in cs.LG, cs.AI, and stat.ME

Abstract: Graph Neural Networks (GNNs) have emerged as powerful representation learning tools for capturing complex dependencies within diverse graph-structured data. Despite their success in a wide range of graph mining tasks, GNNs have raised serious concerns regarding their trustworthiness, including susceptibility to distribution shift, biases towards certain populations, and lack of explainability. Recently, integrating causal learning techniques into GNNs has sparked numerous ground-breaking studies since many GNN trustworthiness issues can be alleviated by capturing the underlying data causality rather than superficial correlations. In this survey, we comprehensively review recent research efforts on Causality-Inspired GNNs (CIGNNs). Specifically, we first employ causal tools to analyze the primary trustworthiness risks of existing GNNs, underscoring the necessity for GNNs to comprehend the causal mechanisms within graph data. Moreover, we introduce a taxonomy of CIGNNs based on the type of causal learning capability they are equipped with, i.e., causal reasoning and causal representation learning. Besides, we systematically introduce typical methods within each category and discuss how they mitigate trustworthiness risks. Finally, we summarize useful resources and discuss several future directions, hoping to shed light on new research opportunities in this emerging field. The representative papers, along with open-source data and codes, are available in https://github.com/usail-hkust/Causality-Inspired-GNNs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wenzhao Jiang (5 papers)
  2. Hao Liu (497 papers)
  3. Hui Xiong (244 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com