Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Democratize with Care: The need for fairness specific features in user-interface based open source AutoML tools (2312.12460v1)

Published 16 Dec 2023 in cs.HC, cs.CY, and cs.LG

Abstract: AI is increasingly playing a pivotal role in businesses and organizations, impacting the outcomes and interests of human users. Automated Machine Learning (AutoML) streamlines the machine learning model development process by automating repetitive tasks and making data-driven decisions, enabling even non-experts to construct high-quality models efficiently. This democratization allows more users (including non-experts) to access and utilize state-of-the-art machine-learning expertise. However, AutoML tools may also propagate bias in the way these tools handle the data, model choices, and optimization approaches adopted. We conducted an experimental study of User-interface-based open source AutoML tools (DataRobot, H2O Studio, Dataiku, and Rapidminer Studio) to examine if they had features to assist users in developing fairness-aware machine learning models. The experiments covered the following considerations for the evaluation of features: understanding use case context, data representation, feature relevance and sensitivity, data bias and preprocessing techniques, data handling capabilities, training-testing split, hyperparameter handling, and constraints, fairness-oriented model development, explainability and ability to download and edit models by the user. The results revealed inadequacies in features that could support in fairness-aware model development. Further, the results also highlight the need to establish certain essential features for promoting fairness in AutoML tools.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube