Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DiffSpectralNet : Unveiling the Potential of Diffusion Models for Hyperspectral Image Classification (2312.12441v1)

Published 29 Oct 2023 in cs.CV and cs.LG

Abstract: Hyperspectral images (HSI) have become popular for analysing remotely sensed images in multiple domain like agriculture, medical. However, existing models struggle with complex relationships and characteristics of spectral-spatial data due to the multi-band nature and data redundancy of hyperspectral data. To address this limitation, we propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques. Our approach involves a two-step process. First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features. The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification. Then, we employ a pretrained denoising U-Net to extract intermediate hierarchical features for classification. Finally, we use a supervised transformer-based classifier to perform the HSI classification. Through comprehensive experiments on HSI datasets, we evaluate the classification performance of DiffSpectralNet. The results demonstrate that our framework significantly outperforms existing approaches, achieving state-of-the-art performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.