Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Best Arm Identification with Fixed Budget: A Large Deviation Perspective (2312.12137v2)

Published 19 Dec 2023 in cs.LG and stat.ML

Abstract: We consider the problem of identifying the best arm in stochastic Multi-Armed Bandits (MABs) using a fixed sampling budget. Characterizing the minimal instance-specific error probability for this problem constitutes one of the important remaining open problems in MABs. When arms are selected using a static sampling strategy, the error probability decays exponentially with the number of samples at a rate that can be explicitly derived via Large Deviation techniques. Analyzing the performance of algorithms with adaptive sampling strategies is however much more challenging. In this paper, we establish a connection between the Large Deviation Principle (LDP) satisfied by the empirical proportions of arm draws and that satisfied by the empirical arm rewards. This connection holds for any adaptive algorithm, and is leveraged (i) to improve error probability upper bounds of some existing algorithms, such as the celebrated \sr (Successive Rejects) algorithm \citep{audibert2010best}, and (ii) to devise and analyze new algorithms. In particular, we present \sred (Continuous Rejects), a truly adaptive algorithm that can reject arms in {\it any} round based on the observed empirical gaps between the rewards of various arms. Applying our Large Deviation results, we prove that \sred enjoys better performance guarantees than existing algorithms, including \sr. Extensive numerical experiments confirm this observation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets