Papers
Topics
Authors
Recent
2000 character limit reached

Potentials of ChatGPT for Annotating Vaccine Related Tweets (2312.12016v1)

Published 19 Dec 2023 in cs.SI

Abstract: This study evaluates ChatGPT's performance in annotating vaccine-related Arabic tweets by comparing its annotations with human annotations. A dataset of 2,100 tweets representing various factors contributing to vaccine hesitancy was examined. Two domain experts annotated the data, with a third resolving conflicts. ChatGPT was then employed to annotate the same dataset using specific prompts for each factor. The ChatGPT annotations were evaluated through zero-shot, one-shot, and few-shot learning tests, with an average accuracy of 82.14%, 83.85%, and 85.57%, respectively. Precision averaged around 86%, minimizing false positives. The average recall and F1-score ranged from 0.74 to 0.80 and 0.65 to 0.93, respectively. AUC for zero-shot, one-shot, and few-shot learning was 0.79, 0.80, and 0.83. In cases of ambiguity, both human annotators and ChatGPT faced challenges. These findings suggest that ChatGPT holds promise as a tool for annotating vaccine-related tweets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.