Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dual parametric and state estimation for partial differential equations (2312.11839v1)

Published 19 Dec 2023 in eess.SY, cs.SY, math.DS, math.OC, physics.comp-ph, and physics.flu-dyn

Abstract: Designing estimation algorithms for systems governed by partial differential equations (PDEs) such as fluid flows is challenging due to the high-dimensional and oftentimes nonlinear nature of the dynamics, as well as their dependence on unobserved physical parameters. In this paper, we propose two different lightweight and effective methodologies for real-time state estimation of PDEs in the presence of parametric uncertainties. Both approaches combine a Kalman filter with a data-driven polytopic linear reduced-order model obtained by dynamic mode decomposition (DMD). Using examples involving the nonlinear Burgers and Navier-Stokes equations, we demonstrate accurate estimation of both the state and the unknown physical parameter along system trajectories corresponding to various physical parameter values.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. S. L. Brunton and B. R. Noack, “Closed-loop turbulence control: Progress and challenges,” Applied Mechanics Reviews, vol. 67, no. 5, 2015.
  2. R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.
  3. A. Barbagallo, D. Sipp, and P. J. Schmid, “Closed-loop control of an open cavity flow using reduced-order models,” Journal of Fluid Mechanics, vol. 641, pp. 1–50, 2009.
  4. C. W. Rowley and S. T. Dawson, “Model reduction for flow analysis and control,” Annual Review of Fluid Mechanics, vol. 49, pp. 387–417, 2017.
  5. D. F. Gomez, F. D. Lagor, P. B. Kirk, A. H. Lind, A. R. Jones, and D. A. Paley, “Data-driven estimation of the unsteady flowfield near an actuated airfoil,” Journal of Guidance, Control, and Dynamics, vol. 42, no. 10, pp. 2279–2287, 2019.
  6. A. Tsolovikos, E. Bakolas, S. Suryanarayanan, and D. Goldstein, “Estimation and control of fluid flows using sparsity-promoting dynamic mode decomposition,” IEEE Control Systems Letters, vol. 5, no. 4, pp. 1145–1150, 2020.
  7. A. Tsolovikos, S. Suryanarayanan, E. Bakolas, and D. B. Goldstein, “Multiple model dynamic mode decomposition for flowfield and model parameter estimation,” in AIAA SCITECH 2022 Forum, 2022, p. 2427.
  8. R. Orjuela, B. Marx, J. Ragot, and D. Maquin, “State estimation for non-linear systems using a decoupled multiple model,” International Journal of Modelling, Identification and Control, vol. 4, no. 1, pp. 59–67, 2008.
  9. A. A. Adeniran and S. El Ferik, “Modeling and identification of nonlinear systems: A review of the multimodel approach—part 1,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1149–1159, 2016.
  10. T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE transactions on systems, man, and cybernetics, no. 1, pp. 116–132, 1985.
  11. P. Apkarian, P. Gahinet, and G. Becker, “Self-scheduled h∞\infty∞ control of linear parameter-varying systems: a design example,” Automatica, vol. 31, no. 9, pp. 1251–1261, 1995.
  12. G. Z. Angelis, “System analysis, modelling and control with polytopic linear models.” 2003.
  13. A. Fujimori and L. Ljung, “Model identification of linear parameter varying aircraft systems,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 220, no. 4, pp. 337–346, 2006.
  14. K. Taira, S. L. Brunton, S. T. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O. T. Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley, “Modal analysis of fluid flows: An overview,” Aiaa Journal, vol. 55, no. 12, pp. 4013–4041, 2017.
  15. P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of fluid mechanics, vol. 656, pp. 5–28, 2010.
  16. E. A. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373).   Ieee, 2000, pp. 153–158.
  17. E. A. Wan and A. T. Nelson, “Dual extended kalman filter methods,” Kalman filtering and neural networks, pp. 123–173, 2001.
  18. T. A. Wenzel, K. Burnham, M. Blundell, and R. Williams, “Dual extended kalman filter for vehicle state and parameter estimation,” Vehicle system dynamics, vol. 44, no. 2, pp. 153–171, 2006.
  19. C. Jackson, “A finite-element study of the onset of vortex shedding in flow past variously shaped bodies,” Journal of fluid Mechanics, vol. 182, pp. 23–45, 1987.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.