Papers
Topics
Authors
Recent
Search
2000 character limit reached

Shapley-PC: Constraint-based Causal Structure Learning with a Shapley Inspired Framework

Published 18 Dec 2023 in cs.LG, cs.AI, and stat.ME | (2312.11582v3)

Abstract: Causal Structure Learning (CSL), also referred to as causal discovery, amounts to extracting causal relations among variables in data. CSL enables the estimation of causal effects from observational data alone, avoiding the need to perform real life experiments. Constraint-based CSL leverages conditional independence tests to perform causal discovery. We propose Shapley-PC, a novel method to improve constraint-based CSL algorithms by using Shapley values over the possible conditioning sets, to decide which variables are responsible for the observed conditional (in)dependences. We prove soundness, completeness and asymptotic consistency of Shapley-PC and run a simulation study showing that our proposed algorithm is superior to existing versions of PC.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.