Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Unified Pre-training and Adaptation Framework for Combinatorial Optimization on Graphs (2312.11547v1)

Published 16 Dec 2023 in cs.AI and cs.LG

Abstract: Combinatorial optimization (CO) on graphs is a classic topic that has been extensively studied across many scientific and industrial fields. Recently, solving CO problems on graphs through learning methods has attracted great attention. Advanced deep learning methods, e.g., graph neural networks (GNNs), have been used to effectively assist the process of solving COs. However, current frameworks based on GNNs are mainly designed for certain CO problems, thereby failing to consider their transferable and generalizable abilities among different COs on graphs. Moreover, simply using original graphs to model COs only captures the direct correlations among objects, which does not consider the mathematical logicality and properties of COs. In this paper, we propose a unified pre-training and adaptation framework for COs on graphs with the help of the maximum satisfiability (Max-SAT) problem. We first use Max-SAT to bridge different COs on graphs since they can be converted to Max-SAT problems represented by standard formulas and clauses with logical information. Then, we further design a pre-training and domain adaptation framework to extract the transferable and generalizable features so that different COs can benefit from them. In the pre-training stage, Max-SAT instances are generated to initialize the parameters of the model. In the fine-tuning stage, instances from CO and Max-SAT problems are used for adaptation so that the transferable ability can be further improved. Numerical experiments on several datasets show that features extracted by our framework exhibit superior transferability and Max-SAT can boost the ability to solve COs on graphs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.