Papers
Topics
Authors
Recent
2000 character limit reached

Aligning Human Intent from Imperfect Demonstrations with Confidence-based Inverse soft-Q Learning (2312.11194v3)

Published 18 Dec 2023 in cs.RO

Abstract: Imitation learning attracts much attention for its ability to allow robots to quickly learn human manipulation skills through demonstrations. However, in the real world, human demonstrations often exhibit random behavior that is not intended by humans. Collecting high-quality human datasets is both challenging and expensive. Consequently, robots need to have the ability to learn behavioral policies that align with human intent from imperfect demonstrations. Previous work uses confidence scores to extract useful information from imperfect demonstrations, which relies on access to ground truth rewards or active human supervision. In this paper, we propose a transition-based method to obtain fine-grained confidence scores for data without the above efforts, which can increase the success rate of the baseline algorithm by 40.3$\%$ on average. We develop a generalized confidence-based imitation learning framework for guiding policy learning, called Confidence-based Inverse soft-Q Learning (CIQL), as shown in Fig.1. Based on this, we analyze two ways of processing noise and find that penalization is more aligned with human intent than filtering.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.