Papers
Topics
Authors
Recent
2000 character limit reached

Training With "Paraphrasing the Original Text" Teaches LLM to Better Retrieve in Long-context Tasks (2312.11193v10)

Published 18 Dec 2023 in cs.CL and cs.AI

Abstract: As LLMs continue to evolve, more are being designed to handle long-context inputs. Despite this advancement, most of them still face challenges in accurately handling long-context tasks, often showing the "lost in the middle" issue. We identify that insufficient retrieval capability is one of the important reasons for this issue. To tackle this challenge, we propose a novel approach to design training data for long-context tasks, aiming at augmenting LLMs' proficiency in extracting key information from long context. Specially, we incorporate an additional part named "paraphrasing the original text" when constructing the answer of training samples and then fine-tuning the model. Experimenting on LongBench and NaturalQuestions Multi-document-QA dataset with models of Llama and Qwen series, our method achieves an improvement of up to 8.48% and 4.48% in average scores, respectively, showing effectiveness in improving the model's performance on long-context tasks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.