Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Robot Crowd Navigation in Dynamic Environment with Offline Reinforcement Learning (2312.11032v1)

Published 18 Dec 2023 in cs.RO

Abstract: Robot crowd navigation has been gaining increasing attention and popularity in various practical applications. In existing research, deep reinforcement learning has been applied to robot crowd navigation by training policies in an online mode. However, this inevitably leads to unsafe exploration, and consequently causes low sampling efficiency during pedestrian-robot interaction. To this end, we propose an offline reinforcement learning based robot crowd navigation algorithm by utilizing pre-collected crowd navigation experience. Specifically, this algorithm integrates a spatial-temporal state into implicit Q-Learning to avoid querying out-of-distribution robot actions of the pre-collected experience, while capturing spatial-temporal features from the offline pedestrian-robot interactions. Experimental results demonstrate that the proposed algorithm outperforms the state-of-the-art methods by means of qualitative and quantitative analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.