Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Detailed Text-to-Motion Synthesis via Basic-to-Advanced Hierarchical Diffusion Model (2312.10960v1)

Published 18 Dec 2023 in cs.CV

Abstract: Text-guided motion synthesis aims to generate 3D human motion that not only precisely reflects the textual description but reveals the motion details as much as possible. Pioneering methods explore the diffusion model for text-to-motion synthesis and obtain significant superiority. However, these methods conduct diffusion processes either on the raw data distribution or the low-dimensional latent space, which typically suffer from the problem of modality inconsistency or detail-scarce. To tackle this problem, we propose a novel Basic-to-Advanced Hierarchical Diffusion Model, named B2A-HDM, to collaboratively exploit low-dimensional and high-dimensional diffusion models for high quality detailed motion synthesis. Specifically, the basic diffusion model in low-dimensional latent space provides the intermediate denoising result that to be consistent with the textual description, while the advanced diffusion model in high-dimensional latent space focuses on the following detail-enhancing denoising process. Besides, we introduce a multi-denoiser framework for the advanced diffusion model to ease the learning of high-dimensional model and fully explore the generative potential of the diffusion model. Quantitative and qualitative experiment results on two text-to-motion benchmarks (HumanML3D and KIT-ML) demonstrate that B2A-HDM can outperform existing state-of-the-art methods in terms of fidelity, modality consistency, and diversity.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.