Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Soft Alignment of Modality Space for End-to-end Speech Translation (2312.10952v1)

Published 18 Dec 2023 in cs.CL, cs.AI, cs.SD, and eess.AS

Abstract: End-to-end Speech Translation (ST) aims to convert speech into target text within a unified model. The inherent differences between speech and text modalities often impede effective cross-modal and cross-lingual transfer. Existing methods typically employ hard alignment (H-Align) of individual speech and text segments, which can degrade textual representations. To address this, we introduce Soft Alignment (S-Align), using adversarial training to align the representation spaces of both modalities. S-Align creates a modality-invariant space while preserving individual modality quality. Experiments on three languages from the MuST-C dataset show S-Align outperforms H-Align across multiple tasks and offers translation capabilities on par with specialized translation models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube