Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning to Learn in Interactive Constraint Acquisition (2312.10795v1)

Published 17 Dec 2023 in cs.AI and cs.LG

Abstract: Constraint Programming (CP) has been successfully used to model and solve complex combinatorial problems. However, modeling is often not trivial and requires expertise, which is a bottleneck to wider adoption. In Constraint Acquisition (CA), the goal is to assist the user by automatically learning the model. In (inter)active CA, this is done by interactively posting queries to the user, e.g., asking whether a partial solution satisfies their (unspecified) constraints or not. While interac tive CA methods learn the constraints, the learning is related to symbolic concept learning, as the goal is to learn an exact representation. However, a large number of queries is still required to learn the model, which is a major limitation. In this paper, we aim to alleviate this limitation by tightening the connection of CA and Machine Learning (ML), by, for the first time in interactive CA, exploiting statistical ML methods. We propose to use probabilistic classification models to guide interactive CA to generate more promising queries. We discuss how to train classifiers to predict whether a candidate expression from the bias is a constraint of the problem or not, using both relation-based and scope-based features. We then show how the predictions can be used in all layers of interactive CA: the query generation, the scope finding, and the lowest-level constraint finding. We experimentally evaluate our proposed methods using different classifiers and show that our methods greatly outperform the state of the art, decreasing the number of queries needed to converge by up to 72%.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube